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Abstract 

The paper deals with forced vibration of Euler-Bernoulli beam with variable cross-section equipped with  
a distributed dynamic absorber. The beam is subjected to the concentrated and distributed harmonic excita-
tions. The problem is solved using Galerkin’s method and Lagrange’s equations. Performing time-Laplace 
transformation the displacement amplitude of arbitrary point of the beam may be written in the frequency 
domain. The aim of the paper is to find the effectiveness of the distributed vibration absorbers  
in beams. As an example numerical results of vibration reduction in wind turbine’s tower are presented. 
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1. Introduction 

As a main application the dynamic vibration absorbers [DVA] (the most common are 
tuned mass dampers – TMD), correctly attached to vibrating structure and tuned to 
the frequency of harmonic excitation, can cause to cease the motion at the point  
of attachment [1-2].  

Vibration analysis and the proper choice of the absorbers parameters in beam struc-
tures have been very often the subjects of study [3-10]. For continuous structures, such 
as beams, usually the best location of the vibration absorber is the point  
of excitation, but it may be difficult due to technical limitations. Depending upon 
the situation if the local optimization problem (for example minimization of the vibration 
amplitude at the given point) or global optimization problem (minimization of the kinetic 
energy of the whole structure) are to be considered, one may obtain different optimal 
parameters of the single absorber or the system of absorbers and the main issue 
in optimization is the proper placement of the absorbers. 

In many cases there are used systems of tuned mass dampers [MTMD] which may be 
tuned for several resonant frequencies if broadband excitation is applied or for 
a single frequency [3,5] [11-14]. To suppress the structural waves in beams there may be 
used the absorbers distributed continuously along the  length of the beam. A special 
application is the reduction of noise from railway track [15]. Compared with absorber 
applied at a single point, the distributed absorber is effective in case of arbitrary location 
of the exciting force and by appropriate tuning may work in a wide frequency band. 

In this article a model based on Euler-Bernoulli theory is built for a beam with varia-
ble cross-section, subjected to the continuous and concentrated excitation, equipped with 
a dynamic vibration absorber with distributed parameters. Numerical example presented 
concerns the problem of passive vibration control in the real-world wind-turbine’s tow-
er-nacelle system. 
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2. Theoretical model 

Figure 1 presents a system considered in the paper – a beam with variable cross-section 
subjected to the distributed and concentrated forces, with a distributed vibration absorber 
attached. The beam is of length l, the physical and geometrical parameters are functions 
of the position: mass density ρ(x), cross-section area A(x), area moment  
of inertia I(x), Young's modulus E(x), viscous damping coefficient α(x) (Voigt-Kelvin 
rheological model). 
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Figure 1. Beam with a distributed dynamic vibration absorber 

Assuming Euler-Bernoulli model of the beam deformation and Voigt-Kelvin model 
of the beam material, the kinetic energy, the elastic potential energy and the dissipative 
function are given by: 
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The transverse displacement is assumed to have the form of the series: 
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In the above expression ϕ i(x) are the basic functions, chosen in calculations as 
the modes of vibration of the beam with constant cross-section area, without absorbers 
attached. The functions qi(t) are time-dependent generalized co-ordinate that should  
be determined. 
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Substituting the series (4) into discretization (1)–(3) leads to: 
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The terms mij, kij, bij are given by: 
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For any given loading of the beam H(x,t) the generalized force is obtained from for-
mula: 
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Using Lagrange’s equations leads to a system of ordinary second order differential 
equations in the time domain with the unknown generalized co-ordinates qi(t):  
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Performing time-Laplace transform (with initial conditions equal to zero) the system 
of differential equations (12) may be written in the form of the system of linear algebraic 
equations: 
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where Qi(s), Hi(s) denote Laplace transforms of qi(t), Hi(t). 
Having calculated from the system (13) the transforms Qi(s) the transforms of 

the beam deflection may be obtained:  
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The loading H(x,t) depends on the distributed force g(x,t) and p concentrated forces  
Pj(t) applied to the beam at the points of coordinate xj

0, additionally it depends on 
the distributed force f(x,t) applied to the beam from the distributed vibration absorber: 

 1

( , ) ( , ) ( ) ( ) ( , )
p

O

j j

j

H x t q x t P t x x f x tδ
=

= + − +∑
 (15) 

Generalized force Hi(t) for the i-th generalized coordinate qi(t) is obtained from (11): 
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where xL, xR are the limits of the distributed dynamic absorber (Figure 1). 
The Laplace transform of the i-th generalized force may be expressed as: 
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where it is introduced notations: 
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In the above expressions g(x,s), f(x,s) are Laplace transforms of the g(x,t), f(x,t). 
The Laplace transform of the distributed force applied to the beam from the vibration 

absorber is given by [10]: 
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where: ( )m x% , ( )c x% , ( )k x%  – linear mass density, linear damping and stiffness coefficients 

densities of the distributed vibration absorber. 
Insertion of (19) into (18) gives the system of linear equations (13) written in 

the form: 
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Having solved the system (20) the transform of the beam deflection may be obtained 

from series (14). Assuming steady state vibration, after substituting s jω=  ( 1j = − ), 

it may be obtained the deflection of the beam in the frequency domain. 

3. Numerical results: tuned distributed vibration absorber – wind-turbine’s tower-
nacelle system 

It has been built a numerical algorithm which determines in s-domain the transform of 
the deflection of the beam for any set of functions describing its physical  
and geometrical characteristics: A(x), I(x), E(x), α(x), ρ(x), and for arbitrary boundary 
conditions at the ends of the beam. When harmonic excitation is considered the algo-
rithm allows to obtain the amplitude-frequency characteristics of the beam deflection 
and allows for further calculations of the similar frequency characteristics  
of the slope, bending moment, transverse force and the time-averaged kinetic energy. 
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Figure 2. Model of the wind-turbine’s tower-nacelle system with a distributed  
vibration absorber attached 
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Wind turbine towers are slender structures built usually as steel pipes with a diameter 
decreasing with altitude. Because of the simplicity of the tower geometry it is modeled 
as a vertically oriented beam, fixed to the ground at the bottom and with a solid mass, 
modeling a nacelle, attached to the upper end of the beam. Due to the low intrinsic 
damping, steel slender structures are prone to low frequency vibration (caused by wind 
flow, seismic motions) and for this reason are provided with damping devices, such  
as pitch actuators and vibration absorbers, tuned usually to the very first natural frequen-
cies. The Figure 2 presents a model of the wind-turbine’s tower-nacelle system with 
a distributed vibration absorber attached along half the length of the tower. The follow-
ing parameters of the real-world full-scale Vensys 82 wind tower are taken  
in calculations [16–17]: 

• length of the tower: 85.0 m; 
• mass of the tower: 169000 kg; 
• mass of the nacelle: 90000 kg; 
• mass density ρ = 7800 kg/m3; 
• Young's modulus E = 2.1·1011 N/m2. 

The functions approximating cross-section area A(x) and area moment of inertia I(x) 
are determined based on the actual dimensions of the tower cross-section, where maxi-
mal values are as follows: AMAX = 0.2949 m2, IMAX = 0.746 m4. The internal damping of 
the tower is neglected. 

The basic functions in formula (4) are chosen as the modes of vibration of the beam 
with constant cross-section area and moment of inertia, equal the average values for 
the tower, with the bottom end fixed and with a solid mass, equal the mass of a nacelle, 
attached to the upper end.  

The proposed distributed vibration absorber may be an alternative to the absorber ap-
plied at a single point near the nacelle, because it can be easier attachment of a number 
of smaller masses along the tower instead of one large mass at the top. 

The total weight of the absorber is 4225 kg, 2.5 percent of the weight of the turbine’s 
tower. Parameters of the distributed absorber are taken to be constant along the length  

of the beam: ( ) constm x =% , ( ) constc x =% , ( ) constk x =% . The first three natural fre-

quencies of the presented tower-nacelle system are: f1 = 0.352 Hz, f2 = 2.721 Hz,  
f3 = 8.132 Hz. In numerical calculations presented it is assumed that the tower   
is excited by a concentrated harmonic force applied at the top (Figure 2). 

As the first mode of vibration is the most important, as the easiest excited, it will  
be presented the results of tuning of the distributed absorber to the first natural frequency 
f1 = 0.352 Hz. The calculated dimensionless displacement amplitude of the top of 
the beam, referenced to the static deflection, is shown in Figure 2 for a few sets of the 
distributed absorber physical parameters. 

The graphs show the amplitude as a function of frequency for the case without 

the absorber attached, for the absorber with optimal values of stiffness ( )k x%  and damp-

ing ( )c x%  coefficients densities (calculated for a given absorber mass distribution along 

the length of the beam) and additionally for other values of parameters.  
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Figure 3. Dimensionless displacement amplitude of the top of the beam: 

a) without absorber attached; 

b) ( ) 40370 N/mc x l⋅ =% , ( ) 2800 Ns/mk x l⋅ =% ; 

c) ( ) 40370 N/mc x l⋅ =% , ( ) 4000 Ns/mk x l⋅ =% ; 

d) ( ) 40370 N/mc x l⋅ =% , ( ) 1500 Ns/mk x l⋅ =%  

4. Conclusions 

The computational model presented can be used in local and global problems  
of optimal choice of the distributed vibration absorber parameters in Euler-Bernoulli 
beam with variable cross-section. Theoretical calculations are illustrated by an example 
of the possible use of the distributed vibration absorber in wind turbine’s tower vibration 
passive control.  Distributed absorbers can be effective in those cases when it is not 
precisely defined a position of the concentrated force applied and in a case of the distrib-
uted load. 

The model presented in the paper can be further used in investigation of the optimal 
location of the absorber band on the beam and various tuning methods, in particular 
studying of the tunable absorber and with variable parameters along its length. 
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