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Abstract. We study some properties of the coincidence set for the boundary Signorini
problem, improving some results from previous works by the second author and collaborators.
Among other new results, we show here that the convexity assumption on the domain made
previously in the literature on the location of the coincidence set can be avoided under
suitable alternative conditions on the data.

Keywords: Signorini problem, coincidence set, location estimates, free boundary problem,
contact problems.

Mathematics Subject Classification: 35J86, 35R35, 35R70, 35B60.

1. INTRODUCTION

In the classical Signorini problem of linear elasticity [24], or boundary obstacle problem,
an isotropic, homogeneous and linearly hyperelastic material rests in equilibrium
over a rigid foundation. Because the contact zone is an unknown of the problem,
estimates on its location and size are of interest in the study of the properties of
solutions. In the scalar Signorini problem displacements take place along one direction
only and the equation of conservation of momentum is reduced to Poisson’s equation.
The simplified model we shall consider in this paper is the following:





−∆u = f in Ω,
u ≥ ψ, ∂νu ≥ g on Γ,
(u− ψ)(∂νu− g) = 0 on Γ.
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Notice that, although the prototypical model for boundary obstacle problems is
the one in elasticity theory, other related models with similar boundary conditions
are found for instance in semipermeable membranes (the so called parabolic Signorini
problem) or stochastic control (with fractional powers of the Laplacian). See the last
series of Remarks at the end of the paper.

We recall that the weak mathematical formulation of the model (what we will
refer to as Problem 1) is the following: given an open, bounded set Ω ⊂ RN with
Lipschitz boundary Γ = ∂Ω and functions ψ ∈ H1/2(Γ), g ∈ H−1/2(Γ) and f ∈ L2(Ω),
find u ∈ Kψ :=

{
v ∈ H1(Ω) : v ≥ ψ on Γ

}
such that

a0(u, v − u) ≥ F (v − u) for all v ∈ Kψ, (1.1)

where

a0(u, v) :=
∫

Ω

∇u∇vdx and F (v) :=
∫

Ω

fvdx+ 〈g, v〉H−1/2(Γ)×H1/2(Γ). (1.2)

Since the bilinear form is not coercive some additional conditions on the data must
be introduced. In particular, we must assume the compatibility condition

∫

Ω

fdx+ 〈g, 1〉H−1/2(Γ)×H1/2(Γ) ≤ 0. (1.3)

Notice that (1.3) is the one-dimensional equivalent of the general condition for vectorial
formulations of the problem considered initially by Fichera [16, p. 81], although there
it is given in the equivalent form:

∫

Ω

f · rdx+
∫

Γ

g · rdsx ≤ 0

for every rigid and admissible displacement r, with equality if and only if −r is also
admissible, i.e. the cone of displacements moving the body away from the obstacle.
Equivalently, condition (1.3) means that rigid displacements separating the body from
the obstacle increase the elastic energy.

Existence and uniqueness of solution of a general class of problems includ-
ing Problem 1 follow from [21, Theorem 5.1] which proves the result for general
non-symmetric semicoercive bilinear forms, with uniqueness up to a member of a given
subset of the rigid displacements r satisfying the condition F (r) = 0 (where F was
defined in (1.2)). In our case, since the unknown is scalar we obtain uniqueness once
the compatibility condition is assumed.

The coincidence set for a solution u ∈ H1(Ω) is defined as the complement of the
open set

{
x ∈ Γ : u(x) > ψ(x) in the sense of H1/2(Γ)

}
, i.e.

Iψ := {x ∈ Γ : u(x) = ψ(x)}. (1.4)

Observe that it is not justified to require a priori g ∈ H1/2(Ω) since a0 is not
coercive and the solution may fail to be in H2(Ω) in very simple cases. See, e.g.,
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[2, Theorem I.10] and [19, p. 617] for some classical counterexamples of cases in which
u 6∈ H2(Ω), as well as the results presented in [23] and [4].

A common recourse against the lack of coercivity of the bilinear form is to replace
the equation by a new one by introducing an additional regularizing term αu with
α > 0 which makes the proofs of existence and uniqueness straightforward. This is
done e.g. in [2, Theorem I.10]. In this case the corresponding problem (which we shall
refer to as Problem α) involves the PDE −∆u+ αu = f which leads to the bilinear
form

aα(u, v) :=
∫

Ω

∇u∇vdx+ α

∫

Ω

uvdx.

Here, the additional linear term αumakes aα coercive even in the case of no Dirichlet
boundary conditions and allows for a standard proof of existence and uniqueness apply-
ing Stampacchia’s theorem, [21, Theorem 2.1]. Coercivity also allows the use of Brézis’
regularity result [2, Theorem I.10] stating u ∈ H2(Ω) whenever f ∈ L2(Ω), making
the choice g ∈ H1/2(Γ) adequate. We also note that under additional assumptions
on the data, the solution is in L∞(Ω) (see, e.g. [2, Theorem I.10] and [20, §5]). See
also the monograph [22].

Concerning the estimates on the spatial location of the coincidence set we recall
that after Friedman’s pioneering paper [17], the first explicit estimates on the location
were given in [8,11] for Problem α with g = ψ = 0, under the geometric requirement
that Ω be convex and by assuming that the external force be negative near a sufficiently
large part of the boundary Γ.

In Section 2 we extend the conclusion of the above mentioned papers to Problem 1
(see Theorem 2.1) while also relaxing their assumptions. Section 3 is devoted to the
study of location estimates of the coincidence set when the convexity assumption on Ω
is not made. We provide Example 3.1 in which the coincidence set is totally identified
for a non-convex Ω. Finally, by working with a suitable change of coordinates, we
prove the main result of this paper (Theorem 3.4) in which we obtain some location
estimates of the coincidence set without any geometrical assumption on Ω but instead
some regularity condition on ∂Ω.

2. LOCATION ESTIMATES FOR PROBLEM 1

As already mentioned, in [11, Theorem 2] the basic geometrical assumption made for
the study of Problem α with g = ψ = 0 is that the domain Ω must be convex. In this
section we first improve on the aforementioned result by considering Problem 1 (i.e.,
without any regularization term) for non necessarily vanishing data g and ψ. Moreover
we shall assume convexity only for parts of Ω near the boundary on which a suitable
balance between the external force, the obstacle and the boundary flux becomes
negative. We shall also require the boundary to be C3 in order to have a tubular
neighborhood of ∂Ω with a C2 parametrization given by x = x(ξ, s) = ξ + sν(ξ).
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Theorem 2.1. Let Ω be an open set in RN and assume that the data f, g and ψ
lead to a unique solution u ∈ H1(Ω) ∩ L∞(Ω) of Problem 1. Assume that there exist
ε, δ ≥ 0, a subset Γε,δ ⊂ Γ = ∂Ω of class C3, and a tubular semi-neighborhood V −ρ of
Γε,δ for some ρ > 0 with

ρ large enough and V −ρ ⊂ Ω, (2.1)

such that if Ψ ∈ H2(V −ρ ) is a nonnegative extension of ψ to V −ρ (i.e. Ψ = ψ on Γε,δ)
then one has

f + ∆Ψ ≤ −ε on V −ρ ,
and

g − ∂νΨ ≤ −δ on Γε,δ. (2.2)

Then, if ε > 0 and
Ω ∩ V −ρ is a convex set, (2.3)

we have the location estimate Γε,δ ⊂ Iψ on the coincidence set of u.

We note that in the case in which f + ∆Ψ = 0, by assuming the coincidence
set Iψ in the class of regular subsets of ∂Ω, a necessary condition in order to have
a coincidence set with positive measure is that

∫
Iψ
g − ∂νΨ ≤ 0 (see e.g. [17]). So, in

some sense, Theorem 2.1 shows that a pointwise balance estimate (2.2) on a good part
of ∂Ω is enough to identify where the coincidence is taking place.

Proof of Theorem 2.1. We first prove the result for the solutions ũα of Problem α,
for any α > 0. Notice that it is enough to prove the conclusion for data, ψ = 0,
f̃ := f + ∆Ψ− αΨ and g̃ := g − ∂νΨ. Indeed, we let ũ be the solution of Problem 1
under these conditions, and readily see that u := ũ+ Ψ solves the problem with data
f, ψ, g. Let x0 ∈ Γε,δ and, for ρ > 0, let V −ρ be the tubular semi-neighborhood of Γε,δ
defined by the C2 parametrization

x = x(ξ, s) = ξ + sν(ξ), for ξ ∈ Γε,δ, s ∈ (−ρ, 0).

Let ‖ũ‖∞ ≤ M . Define R := min{dist(x0,Γ\Γε,δ), ρ,MN} and consider the subset
D := Ω ∩B(x0, R). Define ∂1D := ∂D\Γ and ∂2D := ∂D ∩ Γ ⊂ Γε,δ as in Figure 1.

ρ

Ω⊂RN

D

∂2D

R

∂1D

x0

Vρ
−

Fig. 1. The setting in the proof of Theorem 2.1
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For some c > 0 define now in D the function uα(x) = c(2N)−1|x − x0|2.
In D we have

−∆uα + αuα = −c+ αc

2N |x− x0|2 ≥ −ε ≥ f̃ in D,

assuming
0 < c ≤ ε.

Additionally, on ∂1D, from assumption (2.1) we have

uα ≥
c

2NR2 ≥M ≥ ũα

which holds if
R ≥ 2NM

c
.

Moreover, since by construction uα is non-negative, on the subset of the coincidence
set Iα := Iα0 ∩ ∂2D we have uα ≥ ũα a.e. Iα and thus a.e. on all of ∂1D ∪ Iα. Now,
the Signorini conditions imply that it has to be ∂ν ũα = g̃ over ∂2D − Iα, and, on the
other hand we have

∂νuα(ξ) = cN−1|ξ − x0| cos(ν(ξ), ξ − x0) ≥ −δ ≥ g̃ on ∂2D (2.4)

where we used the convexity of Ω∩ V −ρ (positivity of the cosine) in the first inequality.
Then, by the comparison principle applied to the associated problem on the set D,
with Signorini boundary conditions on ∂2D and with Dirichlet conditions on ∂1D (see,
e.g. [2]) we deduce finally that ũα ≤ uα in D and that the same inequality holds for
the traces, that is:

0 ≤ ũα ≤
c

2N |ξ − x0|2, over Γ ∩B(x0, R) (in the sense of H1/2(Γ)).

Letting ξ → x0 we conclude that for every α > 0, ũα(x) = 0 a.e. in Γε,δ uniformly
(since the estimate on the location of Iα := Iα0 ∩ ∂2D is independent of α).
Final step. For α → 0 we let ũα be the solutions with data f̃ = 0, ψ̃ = 0 and g̃ of
Problem α. The regularity result mentioned above implies that we have ‖ũα‖∞ ≤M
uniformly on α. Then, by well known results we have ũα → ũ0 strongly in H1(Ω) and
therefore ũ0 = 0 on Γε,δ.

Remark 2.2. In fact we can also consider the case ε = 0 and δ = 0 under the
assumptions of Theorem 2.1. Indeed, assume for the moment that we can construct,
for some c > 0, a function w ∈ H2(D) satisfying





−∆w ≥ ε̂ in D,
w ≥ 0 in D,
w = 0 on ∂1D,

∂νw = −δ̂ on ∂2D.
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Then, the function v̂(x) := ũα(x) − w(x) is a solution of Problem α for data
ψ = 0, f̂ := f + ∆Ψ− αΨ +∆w − αw and ĝ := g̃ − δ̂. Taking w(x) = w(sν) = ϕ(s)
and using the expression of the Laplacian on V −ρ (see, e.g. [18] and [25, §4.3.5, p. 62]),
the construction of such a w is reduced to finding ϕ(s) such that





−ϕ′′(s)− (N − 1)H(ξ, s)ϕ′(s) ≥ c,
ϕ(s) ≥ 0
ϕ(0) = 0,
ϕ′(0) = −δ,

for s ∈ (−R, 0), where H(ξ, s) denotes the mean curvature of the hypersurface, to
a distance s of Γε,δ, i.e. at points x = x(ξ, s) = ξ + sν(ξ), ξ ∈ Γε,δ. When Ω ∩ V −ρ
is a convex set, as required in (2.3), we have that H(ξ, s) is non-negative and bounded
for R small enough depending on this convex part of the boundary and thus w can be
made explicit.

3. SHARPER ESTIMATES AND FURTHER REMARKS

One of the main goals of this section is to obtain some sharper location estimates on the
coincidence set and to extend the previous results while dispensing with the convexity
condition (2.3) on the tubular semi-neighborhood of Γε,δ. We start by showing in
a concrete example that this goal is not impossible.

Example 3.1. Let 0 < R0 < R1 and define the open ring

Ω := {x ∈ BR1(0)\BR0(0)}

with inner boundary Γ0 := ∂BR0(0) and outer boundary Γ1 := ∂BR1(0). Let ε > 0,
and Rε ∈ (R0, R1] (see Figure 2).

R1

R0

Γ0

Γ1

Rε

Fig. 2. The contact set for a ring is the whole interior boundary
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Let f ∈ L2(Ω) ∩ L∞(Ω) be such that

f(x) ≤ −ε a.e. in Ωε := BRε(0)\BR0(0),

and consider the special formulation of the Signorini problem

{
−∆u= f in Ω,

u= 0 on Γ1
and





∂νu≥ 0 on Γ0,
u≥ 0 on Γ0,

u∂νu= 0 on Γ0.

Notice that we now do not need the compatibility condition since we have Dirichlet
conditions on Γ1.

We claim that the coincidence set is the whole Γ0, i.e. u|Γ0 ≡ 0. To see this we
apply again the comparison principle for the associated Problem α for any α > 0
and then we pass to the limit α→ 0 as in Theorem 2.1. We define over the ring Ωε,
the function

u(x) := c(|x| −R0)2

for some constant c > 0 to be determined later. Then, writing r for |x| we have

−∆u = −d
2u

dr2 −
(N − 1)

r

du

dr

= −2c− (N − 1)
r

2c(r −R0)

≥ −2c
(

1 + N − 1
R0

(Rε −R0)
)
.

Consequently, −∆u ≥ −ε ≥ f on Ωε whenever c ≤ ε
2

(
1 + N−1

R0
(Rε −R0)

)−1
. For

instance, we may take c := εR0/(4NR1). We set f := −∆u in Ωε and by construction
f ≥ f . Let M := ‖u‖∞,Ω. In order to apply the comparison lemma, we need the
condition u ≥M on Γε := ∂BRε(0), that is, c(Rε −R0)2 ≥M or, equivalently, Rε ≥
R0 +

√
M/c = R0 +2(MNR1ε

−1R−1
0 )1/2 and this is possible for large enough values of

R1. Furthermore, on I = {x ∈ Γ0 : u(x) = 0} we have u ≥ u too, since by construction
u is non-negative. Thus u ≥ u on Γε ∪ I and on the complement Γ0\I, where u > 0,
the Signorini condition implies ∂νu = 0 and also ∂νu = −c(|x| −R0)x = 0. Applying
the comparison principle we deduce u ≤ u on Ωε, and in particular u = 0 over Γ0.

The following result improves Theorem 2.1 for the case ε > 0 and δ > 0.

Theorem 3.2. Assume the conditions of Theorem 2.1 except condition (2.3), for
some fixed ε > 0 and δ > 0. Then we obtain the location estimate Γε,δ ⊂ Iψ on the
coincidence set of u.

Proof. We follow the same arguments of the proof of Theorem 2.1, but instead of
condition (2.3) we use the fact that we can assume that

inf
x0∈Γε,δ,x∈V −

ρ

{cos(x− x0, ν(x0)} ≥ −θ0(δ, ρ) (3.1)
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for some continuous function θ0(δ, ρ) ≥ 0 (as a matter of fact θ0(δ, ρ) ∈ [−1, 1]). Then,
in (2.4) we argue instead with

∂νuα(ξ) = cN−1|ξ − x0| cos(ν(ξ), ξ − x0) ≥ −cN−1Rθ0(δ, ρ) ≥ −δ ≥ g̃ on ∂2D

which holds by taking
cN−1θ0(δ, ρ)R ≤ δ,

i.e.
c ≤ δN

θ0(δ, ρ)R.

Therefore, it is enough to take

c ≤ min
(
ε,

δN

θ0(δ, ρ)R

)

and R ≥ 2NM
c .

Remark 3.3. Notice that when the tubular semi-neighborhood of Γε,δ is convex
then θ0(δ, ρ) = 0. We conjecture that, under suitable additional conditions, it should
be possible to dispense with at least one of the assumptions ε > 0 or δ > 0 on the
semi-neighborhood of Γε,δ. At present it seems that this fact remains an open problem
in the literature. One could try to argue as in the previous Remark in order to extend
the result to the case ε = 0 but with δ > 0. However, it is not entirely clear how to
construct the function w without condition (2.3). Notice that in the special case in
which we assume that all the mean curvatures H(ξ, s) are constant and equal to H,
we may actually solve the auxiliary equation of the above Remark without requiring
H ≥ 0, but under suitable choices of the interval of definition of such functions. Indeed,
the exact solution is given by ϕ(s) = ϕh(s) + ϕp(s). For the general solution of the

homogeneous equation Φ′ = AΦ with Φ = (ϕ,ϕ′), A =
(

0 1
0 −b

)
and b = (N − 1)H

one has Φ(s) = eAs~α with eAs =
(

1 −1
b e−bs

0 e−bs
)
, ~α ∈ R2. Therefore

ϕh(s) = α1 −
α2
b

e−bs.

For the particular solution of the inhomogeneous equation we find with the Ansatz
ϕp(s) = β1s

2 + β2s:
ϕp(s) = −c

b
s.

Introducing the boundary conditions we arrive at α1 = α2/b = (c/b− δ)/b and

ϕ(s) =
(
c

b2
− δ

b

)
(1− e−bs)− c

b
s, s ≤ 0.

Finally, we have ϕ(s) ≥ 0 over some interval (−ε, 0) because ϕ′ is continuous and
negative at zero, therefore in an interval around it, and ϕ(0) = 0, meaning that the
function decreases to zero from the left.
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Our next goal is to improve the location estimates. In order to achieve this we shall
not use a function of the Euclidean norm as local supersolution, but a differentiable
extension of the intrinsic distance over the manifold ∂Ω. The gradient is then tangent
at every point, ∂ν ṽ = 0 and we may build simple supersolutions. Let l(γab) denote the
length of a piecewise C1 curve γab joining two points a, b ∈ Γ. Fix a point x0 ∈ Γ and
an open neighborhood Γ0 of x0 in Γ whose closure is the graph of a Lipschitz map
ϕ : U → R. Define the intrinsic distance to x0 over Γ as

d0(x) := inf{l(γx0x) : γ ∈ C1([0, 1],Γ0), γ(0) = x0, γ(1) = x}, x ∈ Γ0

With this distance Γ0 is a complete metric space determining the same topology as
the differential structure. For Γ0 smooth enough, d0 is a non-negative function in
C2(Γ0) which we now extend. Let Vρ(Γ0) be a tubular neighborhood of Γ0 with the C2

parametrization

x = x(ξ, s) = ξ + sν(ξ) for ξ ∈ Γ0, s ∈ (−ρ, ρ)

and define

d̃0(x) = d̃0(ξ, s) := [s2 + d0(ξ)2]1/2 for every x ∈ Vρ(Γ0).

Now let V0 := Vρ(Γ0)\{x0}. The function d̃0 is clearly in C2(V0) and we know that

ν(ξ) = −∇d̃0(ξ) for any ξ ∈ Γ0 (3.2)

(see [6, Theorem 8.5, Chapter 7]). Furthermore, for any given D precompact in V0,
D b V0, there exist positive constants cd, Cd and c∆ depending on d̃ and D such that

cd|x| ≤ d̃0(x) ≤ Cd|x| and ∆d̃0(x) ≤ c∆ for every x ∈ D b V0.

The second assertion is obvious since d̃0 ∈ C2(V0). For the first simply let m =
minx∈D d̃0(x), M = maxx∈D d̃0(x), l = minx∈D |x|, L = maxx∈D |x|, where we may
assume l > 0 after a translation placing x0 at the origin. Then it suffices to take
cd := m/L and Cd := M/l. Finally, using the extension d̃0 we may define for sufficiently
small τ the balls

B̃0(τ) := {x ∈ Vρ(Γ0) : d̃0(x) < τ}. (3.3)
Equipped with all this we may finally prove our main result.

Theorem 3.4. Let Ω be an open set in RN and suppose that the data f, g and ψ lead
to a unique solution u ∈ H1(Ω) ∩ L∞(Ω). Assume that there exist ε, δ ≥ 0, a subset
Γε,δ ⊂ ∂Ω of class C3, and a tubular semi-neighborhood V −ρ of Γε,δ equipped with the
intrinsic distance, for some ρ > 0 such that

ρ > 0 is large enough and V −ρ ⊂ Ω (3.4)

and such that if Ψ ∈ H2(V −ρ ) is a nonnegative extension of ψ to V −ρ (i.e. Ψ = ψ on
Γε,δ) then we have that

f + ∆Ψ ≤ −ε on V −ρ ,
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and
g − ∂νΨ ≤ −δ on Γε,δ. (3.5)

If ε and δ are strictly positive, then one has the location estimate Γε,δ ⊂ Iψ, the coin-
cidence set of u.

Proof. As in Theorem 2.1, it is enough to work with data f̃ = f + ∆Ψ, ψ̃ = 0 and
g̃ := g − ∂νΨ. Let x0 ∈ Γε,δ and ρmax the maximal width of a tubular neighborhood
around Γε,δ. Define R := min{d(x0,Γ\Γε,δ), ρmax}, D := Ω ∩ B̃(x0, R), ∂1D := ∂D\Γ
and ∂2D := ∂D ∩ Γ ⊂ Γε,δ. Define now in D the function u(x) = cc−1

∆ d̃0(x) for some
c > 0. In D we have

−∆u = − c

c∆
∆d̃0(x) ≥ −ε ≥ f̃ .

Additionally, on ∂1D we have

u ≥ c

c∆
R ≥M ≥ ũ,

assuming that
c

c∆
R ≥M.

Notice that this condition holds once we take ρ > 0 (hence also R) large enough
(for some given c > 0). Moreover, since ∂ν ũ = g̃ over ∂2D − I, by using property (3.2)
we have

∂νu = cc−1
∆ ∂ν d̃0 = −cc−1

∆ ≥ −δ ≥ g̃ on ∂2D,

once we take
cc−1

∆ ≤ δ,
i.e.

c ≤ min(δc∆, ε).

Moreover, since u = 0 in ∂1D ∪ I we have uα ≥ ũα here. This yields ũ ≤ u in H1(D)
and the same inequality holds for the traces, that is:

0 ≤ ũ(x) ≤ c

c∆
d̃0(x), over Γ ∩ B̃(x0, R) in H1/2(Γ).

Letting x→ x0 we conclude that ũ(x) = 0 a.e. in Γε,δ.

4. FINAL REMARKS AND RELATED WORK

The above results can be easily extended to the associated heat equation with Signorini
boundary conditions by using arguments similar to those found in [10]. Moreover, it
is also possible to extend them to Poisson’s equation or to the heat equation with
dynamic boundary conditions as in [9] and [7], respectively. Notice that according to
the equivalent formulation of the fractional Laplacian operator (see, e.g. [3] and the
multiple references given in [14]), the case of dynamical Signorini boundary conditions
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for the Poisson and related linear equations corresponds to the usual obstacle problem
associated to the fractional Laplace operator.

The Signorini boundary conditions can be also formulated in terms of multivalued
nonlinear maximal monotone graphs (see [2]). Some results analyzing the set in which
the solution vanishes on the boundary for other different nonlinear boundary conditions
was the main goal of the paper [12]. See also [5] for the case of singular nonlinear
boundary conditions.

The proof techniques used in the present scalar Signorini problem can also be
applied to the study of the contact region of one of the vectorial components of the
deformation field associated to some problems in linear elasticity (see, e.g. [15] and [1]).

A different class of problems to which the techniques of this paper can be applied
are the ones mentioned in the pioneering book [15] concerning temperature control or
reverse osmosis membranes (see also the associated homogenization process in [13]).
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