Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The article discusses an example of the use of graph search algorithms with trace of water analysis and aggregation of failures in the occurrence of a large number of failures in the Water Supply System (WSS). In the event of a catastrophic situation, based on the Water Distribution System (WDS) network model, information about detected failures, the condition and location of valves, the number of repair teams, criticality analysis, the coefficient of prioritization of individual network elements, and selected objective function, the algorithm proposes the order of repairing the failures should be analyzed. The approach proposed by the authors of the article assumes the selection of the following objective function: minimizing the time of lack of access to drinking water (with or without prioritization) and minimizing failure repair time (with or without failure aggregation). The algorithm was tested on three different water networks (small, medium, and large numbers of nodes) and three different scenarios (different numbers of failures and valves in the water network) for each selected water network. The results were compared to a valve designation approach for closure using an adjacency matrix and a Strategic Valve Management Model (SVMM).
Słowa kluczowe
Rocznik
Tom
Strony
art. no. e141594
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
- Institute of Computing Science, Poznan University of Technology, ul. Piotrowo 2, 60-965 Poznan, Poland
autor
- Institute of Computing Science, Poznan University of Technology, ul. Piotrowo 2, 60-965 Poznan, Poland
Bibliografia
- [1] L. Mays, Urban Water Supply Handbook, New York, Mc Graw Hill, 2002.
- [2] World Health Organization, Guidelines for Drinking-Water Quality, Second edition, vol. 1, Recommendations, 2004.
- [3] T. Hadzilacos et al., “UtilNets: A Water Mains Rehabilitation Decision-Support System Computers”, Comput. Environ. Urban Syst., vol. 24 no. 3 pp. 215–232, 2000, doi: 10.1016/S0198-9715(99)00058-7.
- [4] R.A. Francis, S.D. Guikema, and L. Henneman, “Baysesian Belief Networks for Predicting DrinkingWater Distribution System Pipe Breaks”, Reliab. Eng. Syst. Saf., vol. 130, pp. 1–11, Oct. 2014, doi: 10.1016/j.ress.2014.04.024.
- [5] S. Rimkevicius et al., “Development of approach for reliability assessment of pipeline network system”, Appl. Energy, vol. 94, pp. 22–33, Jun. 2012, doi: 10.1016/j.apenergy.2012.01.015.
- [6] G. Moser, S. German, and P.F.C. Smith, “Performance comparison of reduced models for leak detection in water distribution networks”, Adv. Eng. Inf., vol. 29, no. 3, pp. 714–726, 2015, doi: 10.1016/j.aei.2015.07.003.
- [7] R. Perez et al., “Methodology for leakage isolation using pressure sensitivity analysis in water distribution networks”, Control Eng. Pract., vol. 19, no. 10, pp. 1157–1167, 2011, doi: 10.1016/j.conengprac.2011.06.004.
- [8] R. Casey, P.F. Boulos, C.H. Orr, and C.M. Bros, “Valve Criticality Modeling”, Eighth Annual ASCE Water Distibution Systems Analysis Symposium, USA, 2006, pp. 1–8, doi: 10.1061/40941(247)32.
- [9] I. Piegdoń, B. Tchórzewska-Cieślak, and M. Eid, “Managing the risk of failure of the water supply network using the mass service system”, Eksploatacja i Niezawodno´s´c, vol. 20 no. 2, pp. 284–291, 2018, doi: 10.17531/ein.2018.2.15.
- [10] D. Kowalski, B. Kowalska, and M. Kwietniewski, “Monitoring of water distribution system effectiveness using fractal geometry”, Bull. Pol. Acad. Sci. Tech. Sci., vol. 63, no. 1, pp. 155–161, 2015, doi: 10.1515/bpasts-2015-0017.
- [11] A. Anotnowicz, M. Nowak, and A. Urbaniak, “Task Scheduling Algorithm for Renovation Teams of Water Distribution Systems”, in Proc. 2020 21st International Carpathian Control Conference: Virtual Conference, Slovak Republic, 2020, doi: 10.1109/ICCC49264.2020.9257273.
- [12] G. Eason, B. Noble, and I. N. Sneddon, Opflow, AWWA, vol. 42, no. 5, 2016, pp. 11.
- [13] A. Bałut and A. Urbaniak, “Management of Water Pipeline Netowrk Supported by Hydraulic Models and Information System”, in Proc. ICCC’2011, Czech Republic, 2011, doi: 10.1109/CarpathianCC.2011.5945807.
- [14] H. Fujiwara et al., “Japan Seismic Hazard Information Stat”, 4th International Conference on Earthquake Engineering Taipei, Taiwan, 2006, p. 274.
- [15] E.H. Field and 2014 WGCEP, “UCERF3: A new earthquake forecast for California’s complex fault system”, U.S. Geological Survey 2015–3009, p. 6, 2015, doi: 10.3133/fs20153009.
- [16] L.A. Rossman, Epanet 2 User Manual, Water Supply and Water Recourses Divisio National Risk, Management Research Laboratory Cincinnati, OH 45268, EP/600/R-00/057, September 2000.
- [17] A. Antonowicz, A. Bałut, A. Urbaniak, and P. Zakrzewski “Algorithm for Early Warning System for Contamination in Water Network”, 2019 20th International Carpathian Control Conference (ICCC), 2019, pp. 1–5, doi: 10.1109/CarpathianCC.2019.8765966.
- [18] K.A. Klise, R. Murray, and T. Haxton, “An overview of the Water Network Tool for Resilience (WNTR)”, in Proc. 1st Interational WDSA/CCWI Joint Conference, 2018, p. 8.
- [19] K.A. Klise, M. Bynum, D. Moriarty, and R. Murray, “A software framework for assessing the resilience of drinking water systems to disasters with an example earthquake case study”, Environ. Modell. Software, vol. 95, p. 420–431, doi: 10.1016/j.envsoft.2017.06.022.
- [20] K.A. Klise et al., “Water Network Tool for Resilience (WNTR) User Manual” U.S. EPA Technical Report, EPA/600/R-17/265, p. 47.
- [21] Ray documentation. [Online] Available: https://github.com/rayproject/ray.
- [22] H. Jun, Strategic valve location in a water distribution system, Ph.D. Thesis, Faculty of the Virginia Polytechnic Institute and State University, 2005, Virginia.
- [23] C. Sheppard, Genetic Algorithms with Python, Smashwords Edition S. l, 2016.
- [24] A. Eiben and J. Smith, Introduction to Evolutionary Computing (Natural Computing Series), Springer Berlin, Heidelberg, 1998.
- [25] S. Raschka, Python Machine Learning – Unlock deeper insights into machine learning with this vital guide to cutting-edge predictive analytic, Packt Publishing, 2015.
- [26] R. Layton, Learning Data Mining with Python – Harness the power of Python to analyze data and create insightful predictive models, Packt Publishing, 2015
- [27] L. Wrona and B. Jaworski, “Application of Genetic Algorithms in Graph Searching Problem”, in Proc. 2nd International Conference on Information Technology, ICIT 2010, Poland, 2010.
- [28] J. Bajer and A. Przebinda, “Czynniki wpływające na czas usuwania awarii przewodów wodociągowych i ich uzbrojenia”, Gaz Woda Tech. Sanit, vol. 11, pp. 20–22, 2005 (in Polish).
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-139138e1-efec-4d59-b66d-366f56f54cea