PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Numerical study on effect of operating pressures on CRKEC-based two-stage ejector

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The two-stage ejector mixing-diffuser section in this study was computed using the Redlich-Kwong equation of state. The ejector was designed based on the constant rate of kinetic energy change (CRKEC) approach. The water vapor mixing diffuser profile and flow properties were calculated using a one-dimensional gas dynamic model. For the numerical investigation, the estimated geometrical profile based on the input design and operating conditions was utilized. ANSYS-Fluent 14.0 was employed for the numerical study. The analysis was conducted under both on-design and off-design scenarios using the standard k-ε turbulence model. The impact of operating factors on flow behavior and entrainment ratios was investigated at off-design conditions. The findings demonstrated that the operational total pressures of the primary, secondary, and exit flows are a function of the two-stage ejector (TSE) entrainment ratio. With a higher exit pressure and more secondary/entrained flows, the entrainment ratio increases. However, altering the primary flow pressure in ways other than for the design conditions reduces the entrainment ratio.
Rocznik
Strony
155--164
Opis fizyczny
Bibliogr. 30 poz., rys.
Twórcy
  • Department of Mechanical Engineering. Harcourt Butler technical University, Kanpur 208002, India
  • bDepartment of Mechanical Engineering. K R Mangalam University, Gurugram 122001, India
autor
  • Department of Mechanical Engineeringg. KNIT, Sultanpur 228118, India
  • Department of Mechanical Engineering. Harcourt Butler technical University, Kanpur 208002, India
autor
  • Department of Mechanical Engg. NIT, Uttrakhand 246174, India
Bibliografia
  • [1] Zhang, B., Wang, Y., Kang, L., & Lv, J. (2013). Study of an innovative ejector heat pump boosted district heating system. Applied Thermal Engineering, 58, 98–110. doi: 10.1016/j.applthermaleng.2013.04.021
  • [2] Jeon, Y., Lee, D., & Cho, H. (2022). Optimisation of motive nozzle position in a modified two-phase ejector expansion household refrigeration cycle using an artificial neural network. Energy Reports, 8, 1114–1123. doi: 10.1016/j.egyr.2021.12.033
  • [3] Cheng, Y., Wang, M., & Yu, J. (2021). Thermodynamic analysis of a novel solar-driven booster-assisted ejector refrigeration cycle. Solar Energy, 218, 85–94. doi:10.1016/j.solener.2021.02.031
  • [4] Yang, Q., Shi, W., Chang, J., & Bao, W. (2015). Maximum thrust for the rocket-ejector mode of the hydrogen fueled rocket-based combined cycle engine. International Journal of Hydrogen Energy, 40(9), 3771–3776. doi: 10.1016/j.ijhydene.2015.01.033
  • [5] Gu, R., Sun, M., Cai, Z., Li, P., & Huang, Y. (2021). Numerical modeling and experimental investigation on the rocket-ejector system with limited mixer length. Acta Astronautica, 182, 13–20. doi: 10.1016/j.actaastro.2021.01.055
  • [6] Gu, R., Sun, M., Cai, Z., Chen, J., Li, P., Dong, Z., Wang, T., Yao, Y., & Huang, Y. (2021). Experimental study on the rocketejector system with a throat in the secondary stream. Aerospace Science and Technology, 113, 106697. doi: 10.1016/j.ast.2021.106697
  • [7] Rogie, B., Wen, C., Kaern, M. R., & Rothuizen, E. (2021). Optimisation of the fuelling of hydrogen vehicles using cascade systems and ejectors. International Journal of Hydrogen Energy, 46(14), 9567–9579. doi:10.1016/j.ijhydene.2020.12.098
  • [8] Rogie, B., Kaern, M. R., Wen, C., & Rothuizen, E. (2021). Numerical optimisation of a novel gas-gas ejector for fuelling of hydrogen vehicles. International Journal of Hydrogen Energy, 45(41), 21905–21919. doi:10.1016/j.ijhydene.2020.05.169
  • [9] Mondal, S., Sahana, C., & De, S. (2022). Optimum operation of a novel ejector assisted flash steam cycle for better utilisation of geothermal heat. Energy Conversion and Management, 253,115–164. doi: 10.1016/j.enconman.2021.115164
  • [10] Xue, H., Wang, L., Jia, L., Xie, C., & Lv, Q. (2020). Design and investigation of a two-stage vacuum ejector for MED-TVC system. Applied Thermal Engineering, 167, 114–713. doi: 10.1016/j.applthermaleng.2019.114713
  • [11] Hailun, Z., Sun, W., Xue, H., Wang, L., & Jia, L. (2021). Performance analysis and prediction of ejector-based hydrogen recycle system under variable proton exchange membrane fuel cell working conditions. Applied Thermal Engineering, 197, 117–302. doi:10.1016/j.applthermaleng.2021.117302
  • [12] Ye, W., Zhang, J., Xu, W., & Zhang, Z. (2020). Numerical investigation on the flow structures of the multi-strut mixing enhancement ejector. Applied Thermal Engineering, 179, 115–653. doi:10.1016/j.applthermaleng.2020.115653
  • [13] Keenan, J. H., & Neumann, E. P. (1942). A simple air ejector. Journal of Applied Mechanics, 9(2), A75-A8. doi: 10.1115/1.4009187
  • [14] Kumar, V., Singhal, G., & Subbarao, P. M. V. (2013). Study of supersonic flow in a constant rate of momentum change (CRMC) ejector with frictional effects. Applied Thermal Engineering, 60(1-2), 61–71. doi: 10.1016/j.applthermaleng.2013.06.045
  • [15] Kumar, V., Singhal, G., & Subbarao, P. M. V. (2018). Realisation of novel constant rate of kinetic energy change (CRKEC) supersonic ejector. Energy, 164, 694–706. doi: 10.1016/j.energy.2018.08.184
  • [16] Gu, W., Wang, X., Wang, L., Yin, X., & Liu, H. (2019). Performance investigation of an auto-tuning area ratio ejector for MEDTVC desalination system. Applied Thermal Engineering, 155,470–479. doi: 10.1016/j.applthermaleng.2019.04.018
  • [17] Aligolzadeh, F., & Hakkaki-Fard, A. (2019). A novel methodology for designing a multi-ejector refrigeration system. Applied Thermal Engineering, 151, 26–37. doi: 10.1016/j.applthermaleng.2019.01.112
  • [18] Ramesh, A. S., & Sekhar, S. J. (2018). Experimental and numerical investigations on the effect of suction chamber angle and nozzle exit position of a steam-jet ejector. Energy, 164, 1097–1113. doi: 10.1016/j.energy.2018.09.010
  • [19] Mohammadi, A. (2019). An investigation of geometrical factors of multi-stage steam ejectors for air suction. Energy, 186, 115–808. doi: 10.1016/j.energy.2019.07.138
  • [20] Aidoun, Z., & Ouzzane, M. (2004). The effect of operating conditions on the performance of a supersonic ejector for refrigeration. International Journal of Refrigeration, 27(8), 974–984. doi:10.1016/j.ijrefrig.2004.05.006
  • [21] Kuo, J. K., & Hsieh, C. Y. (2021). Numerical investigation into effects of ejector geometry and operating conditions on hydrogen recirculation ratio in 80 kW PEM fuel cell system. Energy, 233,121100. doi: 10.1016/j.energy.2021.121100
  • [22] Poirier, M. (2022). Influence of Operating Conditions on the Optimal Nozzle Exit Position for Vapor Ejector. Applied Thermal Engineering, 210, 118377. doi: 10.1016/j.applthermaleng.2022.118377
  • [23] Ghorbani, B., Ebrahimi, A., Moradi, M., & Ziabasharhagh, M. (2021). Continuous production of cryogenic energy at low-temperature using two-stage ejector cooling system, Kalina power cycle, cold energy storage unit, and photovoltaic system. Energy Conversion and Management, 227, 11354. doi: 10.1016/j.enconman.2020.113541
  • [24] Wang, P., Ma, H., Spitzenberger, J., Abu-Heiba, A., & Nawaz, K. (2021). Thermal performance of an absorption-assisted twostage ejector air-to-water heat pump. Energy Conversion and Management, 230, 113761. doi: 10.1016/j.enconman.2020.113761
  • [25] Yan, J., Wen, N., Wang, L., Li, X., Liu, Z., & Li, S. (2018). Optimisation on ejector key geometries of a two-stage ejector-based multi-evaporator refrigeration system. Energy Conversion and Management, 175, 142–150. doi: 10.1016/j.enconman.2018.08.110
  • [26] Kong, F., & Kim, H. D. (2016). Optimisation study of a two-stageejector–diffuser system. International Journal of Heat and Mass Transfer, 101, 1151–1162. doi: 10.1016/j.enconman.2018.08.110
  • [27] Yadav, S. K., Pandey, K. M., Kumar, V., & Gupta, R. (2021). Computational analysis of a supersonic two-stage ejector. Materials Today: Proceedings, 38, 2700–2705. doi: 10.1016/j.matpr.2020.08.483
  • [28] Domairry, G., & Aziz, A. (2009). Approximate Analysis of MHD squeeze flow between two parallel disks with suction or injection by homotopy perturbation method. Mathematical Problems in Engineering. doi: 10.1155/2009/603916
  • [29] Izadi, M., Yüzbaşı, Ş., & Adel, W. (2021). Two novel Bessel matrix techniques to solve the squeezing flow problem between infinite parallel plates. Computational Mathematics and Mathematical Physics, 61(12), 2034–2053. doi: 10.1134/s096554252131002x
  • [30] Dong, J., Hu, Q., Yu, M., Han, Z., Cui, W., Liang, D., Ma, H., & Pan, X. (Year). Numerical investigation on the influence of mixing chamber length on steam ejector performance. Applied Thermal Engineering, 174, 115204. doi.org/10.1016/j.applthermaleng.2020.115204
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-138f0182-ab65-47c0-9e54-36e662b85b92
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.