PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Shear behavior of prestressed UHPC rectangular beams: experimental investigation and limit equilibrium state‑based prediction method

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Ultra-high performance concrete (UHPC) is a durable and versatile construction material that enables the engineering of slender fabricated beams. Nonetheless, existing design methodologies exhibit certain discrepancies in predicting the ultimate shear capacity of UHPC beams. This study aimed to develop an improved predictive shear model based on design and mechanical properties. Eleven prestressed rectangular UHPC beams were subjected to shear tests, systematically investigating essential design parameters such as shear-span-to-depth ratio, stirrups ratio, longitudinal reinforcement ratio, prestressing force, and prestressing type. The results demonstrated that UHPC beams exhibit strain-hardening behavior after cracking, accompanied by the formation of dense diagonal cracks. Localized cracking eventually led to shear failure. The shear behavior was primarily influenced by the shear-span-to-depth ratio, showing an inverse relationship with shear strength. Increasing the longitudinal reinforcement ratio, stirrups ratio, and prestressing force marginally improved shear capacity. Furthermore, a limit equilibrium state-based method was proposed to develop a practical prediction formula that incorporates steel fibers and matrix interaction. The proposed method demonstrated superior accuracy compared to existing design models, displaying an average difference of 1.1% and a correlation coefficient of 0.96 with experimental results.
Rocznik
Strony
art. no. e31, 2024
Opis fizyczny
Bibliogr. 37 poz., rys., wykr.
Twórcy
autor
  • College of Civil Engineering, Tongji University, Shanghai 200092, China
autor
  • College of Civil Engineering, Tongji University, Shanghai 200092, China
  • College of Civil Engineering, Tongji University, Shanghai 200092, China
  • China Southwest Architectural Design and Research Institute Co., LTD, Chengdu 610096, China
autor
  • College of Civil Engineering, Tongji University, Shanghai 200092, China
autor
  • College of Civil Engineering, Tongji University, Shanghai 200092, China
Bibliografia
  • 1. Bertola N, Schiltz P, Denarié E, Brühwiler E. A review of the use of UHPFRC in bridge rehabilitation and new constructionin Switzerland. Front Built Environ. 2021;7: 769686.
  • 2. Zhang Y, Xin H, Correia JAFO. Fracture evaluation of ultra-high-performance fiber reinforced concrete (UHPFRC). EngFail Anal. 2021;120: 105076.
  • 3. Xiao R, Song C, Sun B, Guo R, Chen H. Design and experimental study of a replaceable steel-UHPC composite bridge deck.Structures. 2022;40:1107–20.
  • 4. Gao X, Wang J, Bian C, Xiao R, Ma B. Experimental investigation on the behaviour of UHPC-steel composite slabs under hogging moment. Steel Compos Struct. 2022;42:765–77.
  • 5. Ţibea C, Bompa DV. Ultimate shear response of ultra-high-performance steel fibre-reinforced concrete elements. Arch CivMech Eng. 2020;20:1–16.
  • 6. Yoo D, Yang J. Effects of stirrup, steel fiber, and beam size on shear behavior of high-strength concrete beams. Cement Concrete Compos. 2018;87:137–48.
  • 7. Qiu M, Hu Y, Shao X, Zhu Y, Li P, Li X. Experimental investigation on flexural and ductile behaviors of rebar-reinforced ultra-high-performance concrete beams. Struct Concrete.2022;23:1533–54.
  • 8. Zhang R, Hu P, Chen K, Li X, Yang X. Flexural behavior of T-shaped UHPC beams with varying longitudinal reinforcement ratios. Materials. 2021;14:5706.
  • 9. Yao Y, Mobasher B, Wang J, Xu Q. Analytical approach for the design of flexural elements made of reinforced ultra-high performance concrete. Struct Concrete. 2021;22:298–317.
  • 10. Qi JN, Ma ZJ, Wang JQ. Shear strength of UHPFRC beams:mesoscale fiber-matrix discrete model. J Struct Eng. 2017;143:04016209.
  • 11. Sun B, Luo R, Xiao R, Huang J, Song C, Wang J, et al. Studyon flexural and shear performance of ultra‐high performance concrete prefabricated pi-beams. Struct Concrete. 2023;24(6):7116–7134.
  • 12. Jabbar AM, Mohammed DH, Hamood MJ. Using fibers instead of stirrups for shear in ultra-high performance concrete T-beams. Aust J Struct Eng. 2023;24:36–49.
  • 13. Hasgul U, Yavas A, Birol T, Turker K. Steel fiber use as shear reinforcement on I-shaped UHP-FRC beams. Appl Sci. 2019;9:5526.
  • 14. Zhao J, Liang J, Chu L, Shen F. Experimental study on shear behavior of steel fiber reinforced concrete beams with high-strength reinforcement. Materials. 2018;11:1682.
  • 15. Gomaa S, Bhaduri T, Alnaggar M. Coupled experimental and computational investigation of the interplay between discrete and continuous reinforcement in ultra high performance concrete beams. I: Experimental testing. J Eng Mech. 2021;147:04021049.
  • 16. Voo YL, Poon WK, Foster SJ. Shear strength of steel fiber-reinforced ultra high-performance concrete beams without stirrups. J Struct Eng. 2010;136:1393–400.
  • 17. Baby F, Marchand P, Toutlemonde F. Shear behavior of ultra-high performance fiber-reinforced concrete beams. I: experimental investigation. J Struct Eng. 2014;140: 04013111.
  • 18. Baby F, Marchand P, Toutlemonde F. Shear behavior of ultra-high performance fiber-reinforced concrete beams. II: Analysis and design provisions. J Struct Eng. 2014;140: 04013112.
  • 19. Pourbaba M, Joghataie A, Mirmiran A. Shear behaviorof ultra-high performance concrete. Constr Build Mater.2018;183:554–64.
  • 20. Mészöly T, Randl N. Shear behavior of fiber-reinforced ultra-high performance concrete beams. Eng Str uct.2018;168:119–27.
  • 21. El-Helou RG, Graybeal BA. Shear behavior of ultra high-performance concrete pretensioned bridge girders. J Struct Eng.2022;148: 04022017.
  • 22. Yang J, Doh J, Yan K, Zhang X. Experimental investigation and prediction of shear capacity for UHPC beams. Case Stud ConstrMater. 2022;16: e1097.
  • 23. JSCE. Recommendations for design and construction of ultra high-strength fiber reinforced concrete structures—draft; 2004.
  • 24. Afnor N, Droll K. P18-710: national addition to Eurocode 2—design of concrete structures: specific rules for ultra-high performance fiber-reinforced concrete (UHPFRC); 2016.
  • 25. Brühwiler E. Swiss Standard SIA 2052 UHPFRC: materials, design and application. In: Fourth international symposium on ultra-high performance concrete and high performance materials; 2016.
  • 26. Yang J, Chen B, Su J, Xu G, Zhang D, Zhou J. Effects of fibers on the mechanical properties of UHPC: a review. J TrafficTransp Eng (Engl Ed). 2022;93:63–87.
  • 27. Zheng H, Fang Z, Chen B. Experimental study on shear behavior of prestressed reactive powder concrete I-girders. FrontStruct Civ Eng. 2019;13:618–27.
  • 28. Wang Q, Song H, Lu C, Jin L. Shear performance of reinforcedultra-high performance concrete rectangular section beams. Structures. 2020;27:1184–94.
  • 29. El-Helou RGG, Graybeal BAA. Shear design of strain-hardening fiber-reinforced concrete beams. J Struct Eng. 2023;149:04022234.
  • 30. Solhmirzaei R, Salehi H, Kodur V, Naser MZ. Machine learning framework for predicting failure mode and shear capacity of ultra high performance concrete beams. Eng Struct. 2020;224:111221.
  • 31. Kodsy A, Morcous G. Shear strength of ultra-high-performance concrete (UHPC) beams without transverse reinforcement: prediction models and test data. Materials. 2022;15:4794.
  • 32. GB/T 31387-2015. Reactive powder concrete. Beijing: AQSIQ and MC; 2015.
  • 33. Specification for application of highway ultra high performance concrete bridge and culverts. China: MOT; 2020.
  • 34. Ma K, Ma Y, Liu B. Experimental investigation on ultra high performance fiber reinforced concrete beams. Mech Adv MaterStruct. 2023;301:155–71.
  • 35. Ahmad S, Bahij S, Al-Osta M, Adekunle S, Al-Dulaijan S. Shear behavior of ultra high-performance concrete beams reinforced with high-strength steel bars. ACI Struct J. 2019;116:3–14.
  • 36. Khuntia M, Stojadinovic B, Goel S. Shear strength of normal and high-strength fiber-reinforced concrete beams without stirrups. ACI Struct J. 1999;96(2):282–90.
  • 37. Ashour SA, Hasanain GS, Wafa FF. Shear behaviour of high-strength fiber reinforced concrete beams. ACI Struct J.1992;89(2):176–84.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-138d9a55-f2a2-4519-bb1e-9e94b4513232
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.