PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Phase unwrapping method based on improved U-net network

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In order to solve the problem of unwrapping the phase in digital holographic reconstruction, a new convolutional architecture is proposed. The proposed method takes the U-net network as a framework, and incorporates the lightweight deep learning network of Mobilenetv1 in the encoding part to reduce the model complexity, the number of parameters, and the cost of computation; and proposes a complex dual-channel convolutional block in the decoding part instead of the 3×3 convolution in the original U-net network, which fully incorporates the features in the decoding process. (abbreviated as DC-UMnet network) Meanwhile, the loss value is calculated using the SmoothL1Loss function, and the activation function uses ReLU6. Finally, the simulated dataset containing noise is used for training; and the experimentally obtained wrapped phase maps is used for verifying. The simulation results show that under different degrees of noise conditions, compared with the DCT method and the deep learning phase unwrapping network, the structural similarity index values of the DC-UMnet network are improved by 0.416 and 0.064; and the normalized root-mean-square errors are reduced respectively by 13.2% and 5.8%. Through the actual measurement data, the proposed network model of the feasibility and good noise reduction ability are verified, which can realize digital holographic phase unwrapping in a simple, fast and efficient way.
Czasopismo
Rocznik
Strony
523--539
Opis fizyczny
Bibliogr. 17 poz., rys., tab.
Twórcy
autor
  • North University of China, College of Mechanical Engineering, Taiyuan, 030051, China
  • North University of China, College of Mechanical Engineering, Taiyuan, 030051, China
  • North University of China, College of Mechanical Engineering, Taiyuan, 030051, China
autor
  • North University of China, College of Mechanical Engineering, Taiyuan, 030051, China
autor
  • North University of China, College of Mechanical Engineering, Taiyuan, 030051, China
  • North University of China, College of Mechanical Engineering, Taiyuan, 030051, China
Bibliografia
  • [1] NGUYEN T.L., PRADEEP S., JUDSON-TORRES R.L., REED J., TEITELL M.A., ZANGLE T.A., Quantitative phase imaging: Recent advances and expanding potential in biomedicine, ACS Nano 16(8), 2022: 11516-11544. https://doi.org/10.1021/acsnano.1c11507
  • [2] KEMPER B., ILLY E., Digital holographic microscopy, Photonics Views 17(1), 2020: 32-35. https://doi.org/10.1002/phvs.202000007
  • [3] BAI C., PENG T., MIN J.W., LI R., ZHOU Y., YAO B., Dual-wavelength in-line digital holography with untrained deep neural networks, Photonics Research 9(12), 2021: 2501-2510. https://doi.org/10.1364/PRJ.441054
  • [4] DE GROOT P.J., DECK L.L., SU R., OSTEN W., Contributions of holography to the advancement of interferometric measurements of surface topography, Light: Advanced Manufacturing 3(2), 2022: 258-277. https://doi.org/10.37188/lam.2022.007
  • [5] GAO Y.Z., WANG J., TANG J.B., LIU J.J., YAN Q., HUA D.X., Dispersion of cloud droplet based on pulsed digital holographic interferometry, Acta Optica Sinica 42(6), 2022: 0609001. https://doi.org/10.3788/AOS202242.0609001
  • [6] LIU Y.K., XIAO W., CHE L.P., et al., Study on cavitation imaging of cancer cells based on digital holographic microscopy, Chinese Journal of Lasers 49(20), 2022: 2007209.
  • [7] LIU J., TIAN P., LI H., WEI H., DENG G., ZHOU S., MA Z., WANG W., HE L., An improved synthesis phase unwrapping method based on three-frequency heterodyne, Sensors 22(23), 2022: 9388. https://doi.org/10.3390/s22239388
  • [8] LI S.J., ZHANG S.B., GAO Y.D., LI T., HAN J.Z., CHEN Q., ZHANG Y.S., TIAN Y., Time series phase unwrapping algorithm using LP-norm optimization compressive sensing, International Journal of Applied Earth Observation and Geoinformation 117, 2023: 103182. https://doi.org/10.1016/ j.jag.2023.103182
  • [9] YAN L., ZHANG H., ZHANG R., XIE X., CHEN B., A robust phase unwrapping algorithm based on reliability mask and weighted minimum least-squares method, Optics and Lasers in Engineering 112, 2019: 39-45. https://doi.org/10.1016/j.optlaseng.2018.08.024
  • [10] WANG K., LI Y., KEMAO Q., DI J., ZHAO J., One-step robust deep learning phase unwrapping, Optics Express 27(10), 2019: 15100- 15115. https://doi.org/10.1364/OE.27.015100
  • [11] ZHANG Y., NOACK M.A., VAGOVIC P., FEZZAA K., GARCIA-MORENO F., RITSCHEL T., VILLANUEVA -PEREZ P., PhaseGAN: A deep-learning phase-retrieval approach for unpaired datasets, Optics Express 29(13), 2021: 19593-19604. https://doi.org/10.1364/OE.423222
  • [12] PARK S., KIM Y., MOON I., Automated phase unwrapping in digital holography with deep learning, Biomedical Optics Express 12(11), 2021: 7064-7081. https://doi.org/10.1364/BOE.440338
  • [13] QIAO C., LI D., GUO Y., LIU C., JIANG T., DAI Q., LI D., Evaluation and development of deep neural networks for image super-resolution in optical microscopy, Nature Methods 18(2), 2021: 194-202. https://doi.org/10.1038/s41592-020-01048-5
  • [14] XU R.S., LUO X.N., SHEN Y.Q., GUO C.W., ZHANG W.T., GUAN Y.Q., FU Y.X., LEI L.H., Research on phase unwrapping technology based on improved U-Net network, Infrared and Laser Engineering 53(02), 2024: 20230564. https://doi.org/10.3788/IRLA20230564
  • [15] ZHOU L., YU H., PASCAZIO V., XING M., PU-GAN: A one-step 2D InSAR phase unwrapping based on conditional generative adversarial network, IEEE Transactions on Geoscience and Remote Sensing 60, 2022: 1-10. https://doi.org/10.1109/TGRS.2022.3145342
  • [16] SPOORTHI G.E., GORTHI R.K.S.S., GORTHI S., PhaseNet 2.0: Phase unwrapping of noisy data based on deep learning approach, IEEE Transactions on Image Processing 29, 2020: 4862-4872. https://doi.org/10.1109/TIP.2020.2977213
  • [17] XU M., TANG C., SHEN Y., HONG N., LEI Z., PU-M-Net for phase unwrapping with speckle reduction and structure protection in ESPI, Optics and Lasers in Engineering 151, 2022: 106824. https:// doi.org/10.1016/j.optlaseng.2021.106824
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-13878ea6-3585-4271-b21f-0eed52711dca
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.