PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Development of PROMETHEE-Entropy data mining model for groundwater potentiality modeling: a case study of multifaceted geologic settings in south-western Nigeria

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work looks at developing an object-driven decision support system (DSS) model with the goal of improving the prediction accuracy of the present expert-driven DSS model in assessing groundwater potentiality. The database of remote sensing, geological, and geophysical information was constructed using the technological efficiency of GIS, data mining, and programming tools. Groundwater potential conditioning factors (GPCF) extracted from the datasets include lithology (Li), hydraulic conductivity (K), lineament density (Ld), transmissivity (T), and transverse resistance (TR) for groundwater potentiality mapping in a typical hard rock multifaceted geologic setting in south-western Nigeria. A Python-based entropy approach was used to objectively weight these factors. The weightage findings determined that the greatest and lowest given values for Ld and K were 0.6 and 0.03, respectively. The produced Python-based PROMETHEE-Entropy model algorithm was born through combining the weight findings with the Python-based PROMETHEE-II method. The groundwater potentiality model (GPM) map of the area was created using the model algorithm's outputs on the gridded raster of GPCF themes. Based on the suggested approach, the validated results of the created GPM maps using the Receiver Operating Characteristic (ROC) curve technique yielded an accuracy of 86%. An object-driven DSS model was created using the approaches that were used. The created object-driven model is a viable alternative to existing approaches in groundwater hydrology and aids in the automation of groundwater resource management in the research region.
Czasopismo
Rocznik
Strony
1957--1984
Opis fizyczny
Bibliogr. 87 poz.
Twórcy
  • Department of Applied Geophysics, Federal University of Technology, Akure, Nigeria
  • Department of Applied Geophysics, Federal University of Technology, Akure, Nigeria
  • Present Address: Computing Science and Mathematics, University of Stirling, Stirling FK9 4LA, United Kingdom
Bibliografia
  • 1. Abdullah L, Chan W, Afshari A (2019) Application of PROMETHEE method for green supplier selection: a comparative result based on preference functions. J Ind Eng Int 15:271-285. https://doi.org/ 10.1007/s40092-018-0289-z
  • 2. Adeyemo IA, Omosuyi GO, Ojo BT, Adekunle A (2017) Groundwater potential evaluation in a typical basement complex environment using GRT index- a case study of Ipinsa-Okeodu area, near Akure, Nigeria. J Geosci Environ Prot 5:240-251
  • 3. Adiat KAN, Nawawi MNM, Abdullah K (2012) Assessing the accuracy of GIS-based elementary multi-criteria decision analysis as a spatial prediction tool-a case of predicting potential zones of sustainable groundwater resources. J Hydrol 440-441:75-89
  • 4. Adiat KAN, Nawawi MNM, Abdullah K (2013) Application of multicriteria decision analysis to geoelectric and geologic parameters for spatial prediction of groundwater resources potential and aquifer evaluation. Pure Appl Geophys 170:453-471. https://doi.org/ 10.1007/s00024-012-0501-9
  • 5. Adiat KAN, Ajayi OF, Akinlalu AA, Tijani IB (2019) Prediction of groundwater level in basement complex terrain using artificial neural network: A case of Ijebu-Jesa, southwestern Nigeria. Appl Water Sci 10(1):8. https://doi.org/10.1007/s13201-019-1094-6
  • 6. Ajayi JO (2017) Water from Rocks, an inaugural lecture delivered at the Obafemi Awolowo University Press, Ile-Ife on 11th April, (2017). Inaugural lecture series press, Ile-ife 67p
  • 7. Ajaykumar KK, Bhavana NU, Sankhua RN (2020) Assessment of recharge potential zones for groundwater development and management using geospatial and MCDA technologies in semiarid region of Western India. SN Appl Sci. https://doi.org/10.1007/ s42452-020-2079-7
  • 8. Akinlalu AA, Adegbuyiro A, Adiat KAN, Akeredolu BE, Lateef WY (2017) Application of multi-criteria decision analysis in prediction of groundwater resources potential: a case of Oke-Ana Ilesa area southwestern Nigeria. NRIAG J Astron Geophys 6:182-200
  • 9. Akintorinwa OJ (2014) Groundwater potential assessment of Iwaro-Oka, SW Nigeria using geoelectric parameters. Br J Appl Sci Technol 6(4):364-377
  • 10. Akintorinwa OJ, Atitebi MO, Akinlalu AA (2020) Hydrogeophysical and aquifer vulnerability zonation of a typical basement complex terrain: a case study of Odode Idanre southwestern Nigeria. Heliyon 6:e04549
  • 11. Al-Abadi AM (2015) Groundwater potential mapping at northwestern Wasit and Missan governorates, Iraq using a data-driven weight of evidence technique in framework of GIS. Environ Earth Sci. https://doi.org/10.1007/s12665-015-4097-0
  • 12. Al-Abadi AM, Shahid S (2016) Spatial mapping of artesian zone at Iraqi southern desert using a GIS-based random forest machine learning model. Model Earth Syst Environ 2:96
  • 13. Al-Abadi AM, Pradhan B, Shahid S (2016) Prediction of groundwater flowing well zone at An-Najif province, central Iraq using evidential belief functions model and GIS. Environ Monit Assess 188:549. https://doi.org/10.1007/s10661-016-5564-0
  • 14. Al-Abadi AM, Pourghasemi HR, Shahid S, Ghalib HB (2017) Spatial mapping of groundwater potential using entropy weighted linear aggregate novel approach and GIS. Arab J Sci Eng 42:1185-1199
  • 15. Albadvi A, Chaharsooghi SK, Esfahanipour A (2007) Decision making in stock trading: an application of PROMETHEE. Eur J Oper Res 177:673-683
  • 16. Alhassan DU, Obiora DN, Okeke FN (2015) The assessment of Aquifer potentials and aquifer vulnerability of southern Paiko, northcentral Nigeria, using geoelectric method. Global J Pure Appl Sci 21:51-70
  • 17. Al-Sabahi E, Rahim SA, Wan Zahairi WY, Nozaily AI, Alshaebi F (2009) The characteristics of leachate and groundwater pollution at municipal solid waste landfill of Ibb City. Yemen Am J Environ Sci 5(3):256-266
  • 18. Anbazhagan S, Balamurugan G, Biswal TK (2011) Remote sensing in delineating deep fracture aquifer zones. In: Anbazhagan S, Subramanian SK, Yang X (eds) Geoinformatics in applied geomorphology. CRC Press, Baco Raton, pp 205-229
  • 19. Ariyo SO, Adeyemi GO (2009) Role of electrical resistivity method for groundwater exploration in hard rock areas: a case study from Fidiwo/Ajebo areas of Southwestern Nigeria. Pac J Sci Technol 10(1):483-486
  • 20. Ariyo SO, Folorunso AF, Ajibade OM (2011) Geological and geophysical evaluation of the Ajana area's groundwater potential, Southwestern Nigeria. Earth Sci Res J 15(1):35-40
  • 21. Arsene M, Wassouo Elvis BW, Daniel G, Théophile NM, Kelian K, Daniel NJ (2018) Hydrogeophysical investigation for groundwater resources from electrical resistivity tomography and self-potential data in the Meiganga area, Adamawa Cameroon. Int J Geophys. 14:2697585
  • 22. Arshad A, Zhang Z, Zhang W, Dilawar A (2020) Mapping favorable groundwater potential recharge zones using a GIS-based analytical hierarchical process and probability frequency ratio model: a case study from an agro-urban region of Pakistan. Geosci Front 11(5):1805-1819
  • 23. Aysegül TI, Esra AA (2017) The decision-making approach based on the combination of entropy and Rov methods for the apple selection problem. Eur J Interdiscip Stud 3(3):80-86
  • 24. Braga ACO, Dourado JC, Malagutti FW (2006) Resistivity (DC) method applied to aquifer protection studies. Braz J Geophys 24(4):573-581
  • 25. Brans JP (1982) L’ingénierie de la décision; Elaboration d’instruments d’aide a la décision. La méthode PROMETHEE. In R. Nadeau and M. Landry, editors, L’aide a la décision: Nature, Instruments et Perspectives d’Avenir, pages 183-213, Québec, Canada. Presses de l’Université Laval
  • 26. Butwall M, Ranka P, Shah S (2019) Python in field of data science: a review. Int J Comput Appl 178(49):20-24. https://doi.org/10. 5120/ijca2019919404
  • 27. Chandra S, Ahmed A, Ram A, Dewandel B (2008) Estimation of hard rock aquifers hydraulic conductivity from geoelectrical measurements: a theoretical development with field application. J Hydrol 357:218-227. https://doi.org/10.1016/j.jhydrol.2008.05.023
  • 28. Chen W, Li H, Hou E, Wang S, Wang G, Panahi M, Li T, Peng T, Guo C, Niu C, Xiao L, Wang J, Xie X, Ahmad BB (2018) GIS-based groundwater potential analysis using novel ensemble weights-of evidence with logistic regression and functional tree models. Sci Total Environ 634:853-867. https://doi.org/10.1016/j.scitotenv. 2018.04.055
  • 29. Chowdhury A, Jha MK, Chowdary VM, Mal BC (2009) Integrated remote sensing and GIS-based approach for assessing groundwater potential in West Medinipur district, West Bengal India. Int J Remote Sens 30(1):231-250
  • 30. CorsiniCerviRonchetti AFF (2009) Weight of evidence and artificial neural networks for potential groundwater spring mapping: an application to the Mt Modino area Northern Apennines Italy. Geomorphology 111:79-87
  • 31. Diminescu MA, Dumitran GE, Vuta LL (2019) Experimental methods to determine the hydraulic conductivity (2019). Dio: https:// doi.org/10.1051/e3sconf/20198506010
  • 32. Duze M, Ojo A (1982) Senior school atlas. Macmillian Education, Lagos. pp 113
  • 33. El-mahdy SI, Mohamed MM (2014) Groundwater potential modeling using remote sensing and GIS: a case study of the Al Dhaid area. United Arab Emirates Geocarto Int. https://doi.org/10. 1080/10106049.2013.784366
  • 34. Jenks GF (1967) The data model concept in statistical mapping. Int Yearb Cartograp 7:973-980
  • 35. Karnieli A, Meisels A, Fisher L (1996) Automatic extraction and evaluation of geological linear features from digital remote sensing data using a hough transform. Photogramm Eng Remote Sens 62(5):525-531
  • 36. Lee S, Kim YS, Oh HJ (2012) Application of a weights-of-evidence method and GIS to regional groundwater productivity potential mapping. J Environ Manag 96(1):91-105
  • 37. Li P, Wu J, Qian H (2012) Groundwater quality assessment based on rough sets attribute reduction and TOPSIS method in a semiarid area. China Environ Monit Assess 184:4841-4854. https:// doi.org/10.1007/s10661-011-2306-1
  • 38. Lin ZZ, Wen FS (2009) Entropy weight-based decision-making theory and its application to black-start decision-making. Proceedings of the CSU EPSA 21(6):26-33
  • 39. Manap MA, Nampak H, Pradhan B, Lee S, Sulaiman WNA, Ramli MF (2014) Application of probabilistic-based frequency ratio model in groundwater potential mapping using remote sensing data and GIS. Arab J Geosci 7:711-724
  • 40. McKay G, Harris JR (2015) Comparison of the data-driven random forests model a knowledge-driven method for mineral prospectivity mapping: a case study for gold deposits around the Huritz Group and Nueltin Suite, Nunavut. Canada Nat Resour Res. https://doi.org/10.1007/s11053-015-9274-z
  • 41. Mogaji KA (2016) Combining geophysical techniques and multicriteria GIS-based application modeling approach for groundwater potential assessment in southwestern Nigeria. Environ Earth Sci. https://doi.org/10.1007/s12665-016-5897-6
  • 42. Mogaji KA, Lim HS (2016) Groundwater potentiality mapping using geoelectrical-based aquifer hydraulic parameters: GIS-based multi-criteria decision analysis modeling approach. Terr Atmos Ocean Sci. https://doi.org/10.3316/TAO.2016.11.01.02
  • 43. Mogaji KA, Lim HS (2019) A GIS-based linear regression modeling approach to assess the impact of geologic rock types on groundwater recharge and its hydrological implication. Model Earth Syst Environ. https://doi.org/10.1007/s40808-019-00670-3
  • 44. Mogaji KA, Omobude OB (2017) Modeling of geoelectric parameters for assessing groundwater potentiality in a multifaceted geologic terrain, Ipinsa Southwest, Nigeria- A GIS-based GODT approach. J Astron Geophys 6:434-451
  • 45. Mogaji KA, Olayanju GM, Oladapo MI (2011) Geophysical evaluation of rock type impact on aquifer characterization, geo-electric assessment and GIS approach in the basement complex of Ondo state, southwestern Nigeria. Int J Water Resourc Environ Eng 3(4):77-86
  • 46. Mogaji KA, Lim HS, Abdullah K (2014) Regional prediction of groundwater potential mapping in a multifaceted geology terrain using GIS-based Dempster-Shafer model. Arab J Geosci 8(5):1-24
  • 47. Mogaji KA, Lim HS, Abdullah K (2015) Modeling groundwater vulnerability prediction using geographic information system (GIS)-based ordered weighted average (OWA) method and DRASTIC model theory hybrid approach. Arab J Geosci. https://doi.org/10. 1007/s12517-013-1163-3
  • 48. Mogaji KA, Gbode IE, Olayanju OA (2021) Modeling of aquifer potentiality using GIS-based knowledge driven technique: a case study of hard rock geological setting, southwestern Nigeria. Sustain Water Resour Manag 7:64. https://doi.org/10.1007/ s40899-021-00538-4
  • 49. Molden D (2007) Water for food, water for life: a comprehensive assessment of water management in agriculture. Earth scan/IWMI
  • 50. Mostafa ME, Zakir FA (1996) New enhancement techniques for azimuthal analysis of lineaments for detecting tectonic trends in and around the Afro-Arabian shield. Int J Remote Sens 17:2923-2943
  • 51. Naghibi SA, Pourghasemi HA, Pourtaghi Z, Rezaei A (2014) Groundwater qanat potential mapping using frequency ratio and Shannon’s entropy models in the Moghan watershed. Iran Earth Sci Inform. https://doi. org/10.1007/s12145-014-0145-7
  • 52. Nampak H, Pradhan B, Manap MA (2014) Application of GIS-based data driven evidential belief function model to predict groundwater potential zonation. J Hydrol 513:283-300
  • 53. Nasiri H, Boloorani AD, Sabokbar HAF, Jafari HR, Hamzeh M, Rafii Y (2012) Determining the most suitable areas for artificial groundwater recharge via an integrated PROMETHEE II-AHP method in GIS environment (case study: Garabaygan Basin, Iran). Environ Monit Assess. https://doi.org/10.1007/s10661-012-2586-0
  • 54. Nigeria Geological Survey Agency (NGSA) (2006) Published by the Authority of the Federal Republic of Nigeria
  • 55. Obaje NG (2009) Geology and mineral resources of Nigeria. Springer, Berlin, p 221. https://doi.org/10.1007/978-3-540-92685-6
  • 56. Odeyemi IB, Malomo S, Okufarasin YA (1985) Remote sensing of rock fractures and groundwater development success in parts of Southwestern Nigeria. In: Natural Resources Forum, United Nations, New York
  • 57. Oh HJ, Kim YS, Choi JK, Park E, Lee S (2011) GIS mapping of regional probabilistic groundwater potential in the area of Pohang City. Korea J Hydrol 399:158-172. https://doi.org/10.1016/j.jhydrol.2010.12.027
  • 58. Okogbue CO, Omonona OV (2013) Groundwater potential of the Egbe-Mopa basement area, central Nigeria. Hydrol Sci J. https://doi.org/ 10.1080/02626667.2013.775445
  • 59. Olabode OF (2019) Potential groundwater recharge sites mapping in a typical basement terrain: a GIS methodology approach. J Geovis Spat Anal. https://doi.org/10.1007/s41651-019-0028-z
  • 60. Oladunjoye MA, Korode IA, Adefehinti A (2019) Geoelectrical exploration for groundwater in crystalline basement rocks of Gbongudu community, Ibadan, southwestern Nigeria. Global J Geol Sci 17:25-43
  • 61. Oleary DW, Friedman JD, Phn HA (1976) Lineament, linear, lineation: some proposed new standard for old terms. Geol Soc Amer Bull 87:1463-1469
  • 62. Olorunfemi MO (1990) The Hydrogeological Implication of Topographic Variation with Overburden Thickness in Basement Complex Area of Southwestern Nigeria. J min Geol 26(1)
  • 63. Omosuyi GO (2010) Geoelectric assessment of groundwater prospect and vulnerability of overburden aquifers at Idanre, southwestern Nigeria. Ozean J App Sci 3(1):19-28
  • 64. Ouedraogo I, Defourny P, Vanclooster M (2016) Mapping the groundwater vulnerability for pollution at the pan-African scale. Sci Total Environ 544:939-953
  • 65. Oyedotun TDT, Obatoyinbo O (2012) Hydro-geochemical evaluation of groundwater quality in Akoko NorthWest local government area of Ondo State. Nigeria Revista Ambiente & Agua 7(1):67-80
  • 66. Ozdemir A (2011) Using a binary logistic regression method and GIS for evaluating and mapping the groundwater spring potential in the Sultan Mountains (Aksehir, Turkey). J Hydrol 405(1):123-136
  • 67. Pourghasemi HR, Beheshtirad M (2015) Assessment of data-driven evidential belief function model and GIS for groundwater potential mapping in the Koohrang Watershed. Iran Geocarto International 30(6):662-685. https://doi.org/10.1080/10106049.2014.966161
  • 68. Pourtaghi ZS, Pourghasemi HR (2014) GIS-based groundwater spring potential assessment and mapping in the Birjand Township, southern Khorasan Province Iran. Hydrogeol J 22(3):643-662
  • 69. Qi Y, Wen F, Wang K, Li L, Singh SN (2010) A fuzzy comprehensive evaluation and entropy weight decision-making based method for power network structure assessment. Int J Eng Sci Technol 2(5):92-99
  • 70. Rahaman MA (1988) Recent advances in the study of the basement complex of Nigeria. In: Geological Survey of Nigeria (Ed) Precambrian Geology Nigeria, 11-43 pp
  • 71. Rahmati O, Meselle AM (2016) Application of Dempster-Shafer theory, spatial analysis and remote sensing for groundwater potentiality and nitrate pollution analysis in the semi-arid region of Khuzestan Iran. Sci Total Environ 568:1110-1123
  • 72. Rahmati O, Nazari SA, Mahdavi M, Pourghasemi HR, Zeinivand H (2015) Groundwater potential mapping at Kurdistan region of Iran using analytic hierarchy process and GIS. Arab J Geosci 8:7059-7071
  • 73. Roodposhti MS, Rahimi S, Beglou MJ (2012) PROMETHEE II and fuzzy AHP: an enhanced GIS-based landslide susceptibility mapping. Nat Hazards. https://doi.org/10.1007/s11069-012-0523-8
  • 74. Saaty RW (1987) The analytical hierarchy process - the analytical hierarchy process - what it is and how it is used. Pergamon J Ltd 9(3-5):161-176
  • 75. Safari H, Fagheyi MS, Ahangari SS, Fathi MR (2012) Applying Pro-methee method based on entropy weight for supplier selection. Bus Manag Strategy 3(1):97-106
  • 76. Salem HS (1999) Determination of fluid transmissivity and electric transverse resistance for shallow aquifers and deep reservoirs from surface and well-log electric measurements. Hydrol Earth Syst Sci 3:421-427. https://doi.org/10.5194/hess-3-421-1999
  • 77. Shannon CE (1948) A mathematical theory of communications. Bell Syst Tech J 27(3):379-423
  • 78. Srinivasan V, Thomas BK, Jamwal P, Lele S (2013) Climate vulnerability and adaptation of water provisioning in developing countries: approaches to disciplinary and research-practice integration. Curr Opin Environ Sustain 5:1-6. https://doi.org/10.1016/j.cosust.2013. 07.011
  • 79. Tizro AT, Voudouris KS, Salehzade M, Mashayekhi H (2010) Hydrogeological framework and estimation of aquifer hydraulic parameters using geoelectrical data: a case study from West Iran. Hydrogeol J 18(4):917-929
  • 80. Vander-Velper BPA. (2004) WinRESIST Version 1.0 Resistivity Depth Sounding Interpretation Software M.Sc. Research Project. ITC, Delft Netherland
  • 81. Vincke JP, Brans P (1985) A preference ranking organization method The PROMETHEE method for MCDM. Manag Sci 31:641-656
  • 82. Wang B, Teng Y, Wang H, Zuo R, Zhai Y, Weifeng Y, Yang J (2020) Entropy weight method coupled with an improved DRASTIC model evaluate the special vulnerability of groundwater in Songnen Plain Northeastern China. Hydrol Res 51(5):1184-1200
  • 83. Widianta MMD, Rizaldi T, Setyohadi DPS, Riskiawan HY (2018) Comparison of Multi-Criteria Decision Support Methods (AHP, TOPSIS, SAW & PROMETHEE) for Employee Placement. J Phys Conf Ser 953:012116
  • 84. Yousefi H, Zahedi S, Niksokhan MK (2018) Modifying the analysis made by water quality index using multi-criteria decision-making methods. J Afr Earth Sc 138:309-318
  • 85. Zakir FA, Mohammed HT, Qari ME (1999) A new optimizing technique for preparing lineament density maps. Int J Remote Sens 20(6):1073-1085
  • 86. Zare M, Pourghasemi HR, Vafakhah M, Pradhan B (2013) Landslide susceptibility mapping at Vaz Watershed (Iran) using an artificial neural network model: a comparison between multilayer perceptron (MLP) and radial basic function (RBF) algorithms. Arab J Geosci 6:2873-2888
  • 87. Zou Z, Yun Y, Sun J (2006) Entropy method for determination of the weight of evaluating indicators in fuzzy synthetic evaluation for water quality assessment. J Environ Sci 18(5):1020-1023
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1381b328-6b37-4fe0-b168-97cb5210b050
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.