PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Uniqueness of the Riccati operator of the non-standard ARE of a third order dynamics with boundary control

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
TheMoore-Gibson-Thompson [MGT] dynamics is considered. This third order in time evolution arises within the context of acoustic wave propagation with applications in high frequency ultrasound technology. The optimal boundary feedback control is constructed in order to have on-line regulation. The above requires wellposedness of the associated Algebraic Riccati Equation. The paper by Lasiecka and Triggiani (2022) recently contributed a comprehensive study of the Optimal Control Problem for the MGT-third order dynamics with boundary control, over an infinite time-horizon. A critical missing point in such a study is the issue of uniqueness (within a specific class) of the corresponding highly non-standard Algebraic Riccati Equation. The present note resolves this problem in the positive, thus completing the study of Lasiecka and Triggiani (2022) with the final goal of having on line feedback control, which is also optimal.
Rocznik
Strony
171--189
Opis fizyczny
Bibliogr. 27 poz., rys.
Twórcy
  • Department of Mathematical Sciences, University of Memphis, Memphis, TN, USA 38152
  • Systems Research Institute, Polish Academy of Sciences, Newelska 6, 01447 Warszawa, Poland
  • Department of Mathematical Sciences, University of Memphis, Memphis, TN, USA 38152
Bibliografia
  • Barbu, V., Lasiecka, I. and Triggiani, R. (2006) Tangential Boundary Stabilization of Navier-Stokes Equations. Memoirs AMS 181, 852, 128.
  • Bongarti, M., Lasiecka, I. and Rodrigues, J. H. (2022) Boundary stabilization of the linear MGT equation with partially absorbing boundary data and degenerate viscoelasticity. Discrete and Continuous Dynamical Systems, Series S, doi: 10.3934/dcdss.2022020
  • Bongarti, M., Lasiecka, I. and Triggiani, R. (2022) The SMGTJ equation from the boundary: regularity and stabilization. Applicable Analysis, to appear. doi: 10.1080/00036811.2021.1999420
  • Bucci, F. and Lasiecka, I. (2019) Feedback control of the acoustic pressure in ultrasonic propagation. Optimization, 68, 10, 1811–1854.
  • Clason, C. and Kaltenbacher, B. (2015) Avoiding degeneracy in the Westervelt equation by state constrained optimal control. Evol. Equ. Control Theory 2, 2, 281–300.
  • Clason, C., Kaltenbacher, B. and Veljovic, S. (2009) Boundary Optimal Control of the Westervelt and the Kuznetsov equations. J. Math. Anal. Appl. 356, 738–751.
  • Christov, C. I. and Jordan, P. M. (2005) Heat Conduction Paradox Involving Second-Sound Propagation in Moving Media. Physical Review Letters 94, 15.
  • Datko, R. (1970) Extending a theorem of Lyapunov to Hilbert spaces. J. Math. Anal. & Appl. 32, 610–616.
  • Jordan, P. (2004) An analytical study of Kuznetsov’s equation: diffusive solitons, shock formation, and solution bifurcation. Physics Letters A, 326, 77–84.
  • Jordan, P. M. (2014) Second-sound phenomena in inviscid, thermally relaxing gases. Discrete Contin. Dyn. Syst. Ser. B 19 7, 2189–2205.
  • Jordan, P. M. (2016) The effects of coupling on finite-amplitude acoustic traveling waves in thermoviscous gases: Blackstock’s models. Evol. Equ. Control Theory 5 3, 383–397.
  • Kaltenbacher, B., Lasiecka, I. and Marchand, R. (2011) Wellposedness and exponential decay rates for the Moore-Gibson-Thompson equations arising in high intensity ultrasound. Control and Cybernetics 40, 4, 971–988.
  • Kaltenbacher, B., Lasiecka, I. and Pospieszalska, M. (2012) Well-posedness and exponential decay of the energy in the nonlinear Jordan-Moore-Gibson-Thompson equation arising in high intensity ultrasound. Math. Methods in the Applied Sciences, 22.11, 1250035.
  • Kaltenbacher, B. (2015) Mathematics of nonlinear acoustics. Evol. Equ. Control Theory 4, 447–491.
  • Lasiecka, I., Lukes, D. and Pandolfi, L. (1995) Input dynamics and nonstandard Riccati equations with applications to boundary control of damped wave and plate equations. J. Optimiz. Theory Appl. 84, 3, 549–574.
  • Lasiecka, I., Pandolfi, L. and Triggiani, R. (1997) A singular control approach to highly damped second-order abstract equations and applications. Appl. Math. Optim. 36, 67–107.
  • Lasiecka, I. and Triggiani, R. (2000) Control Theory for Partial Differential Equations: Continuous and Approximation Theories, Vol I: Abstract Parabolic Systems; Vol II: Abstract Hyperbolic Systems over a Finite Time Horizon. Encyclopedia of Mathematics and Its Applications Series. Cambridge University Press, January 2000.
  • Lasiecka, I. and Triggiani, R. (2022) Optimal feedback arising in a third order dynamics with boundary controls and infinite horizon. J. Opt. Th. & Appl., DOI 10.1007/s10957–022–02017–y.
  • Louis, D. and Wexler, D. (1991) The Hilbert space regulator and the operator Riccati equation under stabilizability. Annales de la Societ´e Scientifique de Bruxelles 105, 157–165.
  • Moore, F. K. and Gibson, W. E. (1960) Propagation of weak disturbances in a gas subject to relaxation effects. J. Aero/Space Sci., 27, 117–127.
  • Marchand, R., McDevitt, T. and Triggiani, R. (2012) An abstract semigroup approach to the third-order MGT equation arising in high-intensity ultrasound: Structural decomposition, spectral analysis, exponential stability. Math. Methods in the Applied Sciences, 35: 1896–1929.
  • Nikolic, V. and Kaltenbacher, B. (2017) Sensitivity analysis for shape optimization of a focusing acoustic lens in lithotripsy. Appl. Math. Optim. 76, 2, 261–301.
  • Stokes, G. G. (1851) An examination of the possible effect of the radiation of heat on the propagation of sound. Philosophical Magazine Series, 1(4), 305–317.
  • Straughan, B. (2010) Acoustic waves in Cattaneo-Christov gas. Physics Letters A 374, 2667-2669.
  • Thompson, P. A. (1972) Compressible-Fluid Dynamics. McGraw-Hill, New York.
  • Triggiani, R. (1994a) Optimal boundary control and new Riccati equations for highly damped second-order equations. Differential Integral Equations 7, 1109–1144.
  • Triggiani, R. (1994b) An optimal quadratic boundary control problem for wave and plate-like equations with high internal damping: An abstract approach. Marcel Dekker Lecture Notes Pure Appl. Math. 165, 215–271. International Conference on Optimal Control for Partial Differential Equations, University of Trento, January 1993.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-137999f1-2b5a-4f57-afc6-fec22b64f7b5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.