PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Spatial Scale Analysis of Soil Water Content in Agricultural Soils of the Nitra River Catchment (Slovakia)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Determining the soil water content (SWC) in a soil profile is very important task for agriculture and also for a wider ecological context. The spatial and temporal variability of SWC is a elementary issue for agricultural practice, irrigation management, or landscape management globally. Various methods are used for obtaining the SWC data. Every method has some advantages and also disadvantages. Many of them are focused only on one dimension but modern precise agriculture needs the information about SWC in spatial scale. This study is focused on the spatial scale analysis of SWC in the Nitra river catchment for years 2013 and 2014. The HYDRUS 1D hydrological model and GIS tools were used for the creation maps of SWC. Combination of the measured and simulated data was used for the creation of the unique spatial maps of soil moisture in 0–30 and 30–60 cm soil horizons. Validation of our method shows trustworthy results. Soil water storage and fulfillment of maximum soil water storage were analysed with using the created maps.
Słowa kluczowe
Rocznik
Strony
112--119
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
  • Department of Biometeorology and Hydrology, Horticulture and Landscape Engineering Faculty, Slovak University of Agriculture, Hospodárska 7, 949 76 Nitra, Slovakia
autor
  • Department of Biometeorology and Hydrology, Horticulture and Landscape Engineering Faculty, Slovak University of Agriculture, Hospodárska 7, 949 76 Nitra, Slovakia
Bibliografia
  • 1. Aghakouchak, A. et al., 2015. Remote sensing of drought: progress, challenges and opportunitie. Rev. Geophys., 53, 452–480, doi: 10.1002/2014RG000456.
  • 2. Burger, F., Látečka, M., 2005. Modelling and numerical simulationf of infiltration of irrigation water to porous medium. Acta Horticulturae et Regiotecturae.
  • 3. Clay, H. 2008. Calculating and evaluating validity. Scottsdale: Holcomb Hathaway, Publishers.
  • 4. Decagon devices.
  • 5. Fuska, J. et al., 2014. Bottom topography mapping of water reservoirs and its practical application. Publishing House of the University of Agriculture in Krakow.
  • 6. Haishen, L. et al., 2009. Comparison of measured and simulated water storage in dryland terraces of the loess plateau, China. Agricultural Water Management, 96, 299–306.
  • 7. Horák, J., Šimanský, V., Igaz, D. 2019. Biochar and biochar with N fertilizer impact on soil physical properties in a silty loam haplic luvisol. Journal of Ecological Engineering, 20(7), 31–38. doi. org/10.12911/22998993/109857.
  • 8. Jurík, Ľ., Kaletová, T. 2014. The evaluation of soil water storage in a small catchment in 2009 and 2010. Acta Horticulturae et Regiotecturae, vol. 1, 1–4.
  • 9. Kaletová, T. et al., 2012. Diagnostics of the soil water regime based on complex soil survey. Acta Hydrologica Slovaca, 13(1), 28–37.
  • 10. Kišš V., et al., 2019. Monitoring of the dendrometric changes influenced by soil water content. Journal of Ecological Engineering, 20(1), 34–38, doi.org/10.12911/22998993/93939.
  • 11. Kostka, Z. 1994. Study of soil moisture spatial distribution in mountain catchment using GIS. http://libraries.maine.edu/Spatial/gisweb/spatdb/egis/eg94118.html
  • 12. Landscape Atlas of the Slovak Republic. 2019. http://geo.enviroportal.sk/atlassr/ [Access: 2019–05–25].
  • 13. Leitmanova, M., et al., 2013. Concept of information system for land consolidation projects. Acta Horticulturae et Regiotecturae, 16(2), 40–43, doi.org/10.2478/ahr-2013–0010.
  • 14. Muchová, Z. et al., 2016. Possibilities of optimal land use as a consequence of lessons learned from land consolidation projects (Slovakia). Ecological Engineering, 90, 294–306.
  • 15. NASA, 2010. Science plan for NASA’s science mission directorate. Tech. Rep., National Aeronautics and Space Administration, Washington, D.C.
  • 16. Orfánus, T. 2005. Spatial assessment of soil drought indicators at regional scale: Hydrolimits and soil water storage capacity in Záhorská nížina Lowland in Journal of Hydrology and Hydromechanics, 3, 164–176.
  • 17. Saifadeen, A., Gladnyeva, R. 2012. Modeling of solute transport in the unsaturated zone using HYDRUS-1D.
  • 18. Sellars, S., et al., 2013. Computational Earth Science: Big Data Transformed into Insight, EOS Trans. AGU, 94(32), 277–278.
  • 19. Svetlitchnyi, A.A. et al., 2003. Spatial distribution of soil moisture content within catchments and its modelling on the basis of topographic data. Journal of Hydrology, 277, 50–60.
  • 20. Šimanský, V. et al., 2008. Soil tillage and fertilization of orthic luvisol and their influence on chemical properties, soil structure stability and carbon distribution in water-stable macro-aggregates. Soil & Tillage Research, 100, 125–132. doi: 10.1016/j.still.2008.05.008.
  • 21. Šimunek, J. et al., 2012. The HYDRUS-1D software package for simulating the one-dimensional movement of water. Heat and Multiple Solutes in Variably-Saturated Media. Riverside: University of California Riverside.
  • 22. Tárník, A., Igaz, D., 2017. Validation of HYDRUS 1D model in selected catchment of Slovakia. Acta Horticulturae et Regiotecturae, 20(1), 24–27, doi.org/10.1515/ahr-2017–0006.
  • 23. Toková, L., 2019. Using gravimetric method for soil moisture determination. Veda mladých 2019 – Science of Youth, 14,(1), 122–130.
  • 24. Tischler, M. et al., 2007. A GIS framework for surface-layer soil moisture estimation combining satellite radar measurements and land surface modeling with soil physical property estimation. Environmental Modelling & Software, 22, 891–898.
  • 25. Vitková, J. et al., 2017. Analysis of soil water content and crop yield after biochar application in field conditions. Plant, Soil and Environment, 63, 569–573.
  • 26. Wardlow, B., et al., 2012. Remote sensing of drought: Innovative monitoring approaches. CRC Press, pp. 484.
  • 27. Western, A.W. et al., 2003. Spatial correlation of soil moisture in small catchments and its relationship to dominant spatial hydrological processes. Journal of Hydrology, 286, 113–134.
  • 28. Wilson, D. J., et al., 2003. Spatial distribution of soil moisture over 6 and 30 cm depth, Mahurangi River Catchment, New Zealand. Journal of Hydrology, 276, 254–274.
  • 29. Zeng, Y. et al., 2009. Diurnal pattern of the drying front in desert and its applitacion for determining the effective infiltration. Hydrology and Earth System Sciences, 13, 703–714.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1378ffb8-0438-4516-a44e-46515b741149
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.