PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Vortex-type granulation machines: technological basis of calculation and implementation roadmap

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work is devoted to describing the technological foundations and the main stages of calculating granulation machines with active hydrodynamic modes. The optimisation criterion is substantiated when choosing the design of the granulation machine. The work uses methods of analysis and synthesis, search for cause-and-effect relationships, theoretical and computer modelling, and experimental studies. The nodes of the vortex granulator directly influence the formation of a vortex fluidised bed, and the directional movement of granules of various sizes are determined. A technique for carrying out a computer simulation of the hydrodynamic operating conditions of a granulation machine in various operating modes with an assessment of the quality of granulated products (e.g., the production of porous ammonium nitrate) is proposed. The results of a computer simulation of the process of formation of a vortex fluid-ised bed are presented. A variant of the solution for developing an automation scheme for a vortex-type granulation machine is shown. A roadmap for introducing granulation technology in vortex-type granulation machines is described with details of the main stages. The prospects for improving the design of a vortex-type granulation machine and optimising the operation of a granulation plant to produce porous ammonium nitrate are outlined.
Rocznik
Strony
347--356
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wykr.
Twórcy
  • Academic and Research Institute of Business, Economics and Management, Department of Marketing, Sumy State University, 2, Rymskogo-Korsakova St., 40007 Sumy, Ukraine
autor
  • Faculty of Industrial Technologies in Púchov, Department of Numerical Methods and Computational Modeling, Alexander Dubček University of Trenčín, Ivana Krasku 491/30, 02001 Púchov, Slovakia
  • Faculty of Industrial Technologies in Púchov, Department of Materials Technologies and Environment, Alexander Dubček University of Trenčín, Ivana Krasku 491/30, 02001 Púchov, Slovakia
  • Faculty of Engineering, Department of Transport Engineering and Technology, Saken Seifullin Kazakh Agrotechnical University, Zhengis Ave 62, 010000, Nur-Sultan, Kazakhstan
Bibliografia
  • 1. Stahl H. Comparing Different Granulation Techniques. Pharmaceuti-cal Technology Europe. 23–33.
  • 2. Parikh D. Handbook of Pharmaceutical Granulation Technology. 3rd ed. Informa Healthcare; 2009.
  • 3. Muralidhar P, Bhargav E, Sowmya C. Novel techniques of granula-tion: a review. Int Res J Pharm. 2016; 7(10): 8–13.
  • 4. Solanki HK, Basuri T, Thakkar JH, Patel CA. Recent advances in granulation technology. Int J Pharm Sci. 2010; 5(3): 48–54.
  • 5. Saikh MA. A technical note on granulation technology: a way to optimise granules. Int J Pharm Sci. 2013; 4: 55-67.
  • 6. Artyukhov AE, Artyukhova NO. Technology and the main technologi-cal equipment of the process to obtain N4HNO3 with Nanoporous Structure. Springer Proc Phys. 2019; 221: 585–594.
  • 7. Artyukhov A., Artyukhova N, Krmela J, Krmelová V. Complex design-ing of granulation units with application of computer and software modeling: Case “Vortex granulator”. IOP Conf Ser: Mater Sci and Eng. 2020; 776(1): 012016.
  • 8. Litster J, Ennis B. The science and engineering of granulation pro-cesses. Springer-Science+Business Media; 2004.
  • 9. Srinivasan S. Granulation techniques and technologies: recent progresses. BI. 2015; 5(1): 55–63.
  • 10. Kunii D, Levenspiel O: Fluidization engineering. Butterworth-Heinemann: 1991.
  • 11. Salman AD, Hounslow MJ, Seville, JPK. Granulation. Amsterdam: Elsevier Science Ltd; 2006.
  • 12. Artyukhov A, Artyukhova N, Krmela J, Krmelová V. Granulation machines with highly turbulized flows: Creation of software complex for technological design. IOP Conf Ser: Mater Sci and Eng. 2020; 776(1): 012018.
  • 13. Artyukhov AE, Sklabinskyi VI. Experimental and industrial implemen-tation of porous ammonium nitrate producing process in vortex gran-ulators. Nauk Visnyk Natsionalnoho Hirnychoho Universytetu. 2013; 6:42-48.
  • 14. Artyukhov A, Artyukhova N: Utilization of dust and ammonia from exhaust gases: new solutions for dryers with different types of fluid-ized bed. J Environ Health Sci Eng. 2018; 16(2):193-204.
  • 15. Obodiak V, Artyukhova N, Artyukhov A. Calculation of the residence time of dispersed phase in sectioned devices: Theoretical basics and software implementation. Lect Notes Mech Eng. 2020: 813–820.
  • 16. Artyukhov A, Krmela J, Artyukhova N, Ostroha R. Modeling of the Aerodisperse Systems Hydrodynamics in Devices With Directional Motion of the Fluidized Bed. Encyclopedia of Information Science and Technology, Fifth Edition. IGI Global; 2020. – 1289-1307.
  • 17. Yang WC. Handbook of fluidizaition and fluid-particle systems. New York: Marcel Dekker; 2003.
  • 18. Shi DP, Luo ZH, Guo AY. Numerical Simulation of the Gas−Solid Flow in Fluidized-Bed Polymerization Reactors. Ind Eng Chem Res. 2010; 49(9):4070–4079.
  • 19. Pandaba P, Sukanta, KD. Numerical Simulation for Hydrodynamic Analysis and Pressure Drop Prediction in Horizontal Gas-Solid Flows. Part Sci Technol. 2014; 32(1): 94–103.
  • 20. Feldmann F, Hagemann B, Ganzer L, Panfilov M. Numerical simula-tion of hydrodynamic and gas mixing processes in underground hy-drogen storages. Environ. Earth Sci. 2016; 75: 1165–1172.
  • 21. Crowe C. Multiphase flow handbook. Boca Raton, Taylor & Francis Group; 2006.
  • 22. Rybalko M, Loth E, Lankford D. A Lagrangian particle random walk model for hybrid RANS/LES turbulent flows. Powder Technol. 2012; 221: 105-113.
  • 23. Technology & Commercialization Readiness Level Calculator. Available from: https://portal.nyserda.ny.gov/servlet/servlet.File Download?file=00Pt000000ASeCMEA1.
  • 24. Cussler EL, Moggridge GD. Chemical Product Design (Cambridge Series in Chemical Engineering). Cambridge University Press; 2011.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1376158a-e954-470f-928b-f8ab46a577a8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.