PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effects of different microalgae Botrycoccus sp. beads concentrations on the growth and nutrients uptake in kitchen wastewater

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present study is aimed to access the growth rates, biomass productivity and nutrient removal in different concentrations of microalgae Botryococcus sp. beads using kitchen wastewater as a media. Verhulst logistic kinetic model was used to measure the optimal concentrations of microalgae Botryococcus sp. in kitchen wastewater in terms of cell growth rate kinetics and biomass productivity. The study verified that the maximum productivity was recorded with 1×106 cell/ml of the initial concentration of Botryococcus sp. with 42.64 mg/l/day and the highest removal of TP and ammonia was obtained (78.14% and 60.53% respectively). The highest specific growth rate of biomass at 0.2896 μmax/d compare to other concentrations, while the lowest occurred at concentrations of 105 cells/ml at 0.0412 μmax/d. The present study shows the different concentrations of Botryococcus sp. in alginate beads culturing in kitchen wastewater influence the cells growth of biomass and nutrient uptake with optimum concentration (106 cells/ml) of Botryococcus sp. which is suggested for wastewater treatment purposes. The result of scanning electron microscopy (sem) shows differences in morphology in terms of surface; smoother and cleaner (before the experiment), cracks and rough surface with black/white spots (after the experiment). These findings seemly can be applied efficiently in kitchen wastewater treatment as well as a production medium for microalgae biomass.
Twórcy
  • Universiti Tun Hussein Onn Malaysia Faculty of Engineering Technology, Department of Civil Engineering Technology, Pagoh Education Hub, 84600, Pagoh, Muar, Johor, Malaysia
  • Universiti Tun Hussein Onn Malaysia Faculty of Engineering Technology, Department of Civil Engineering Technology, Pagoh Education Hub, 84600, Pagoh, Muar, Johor, Malaysia
  • Universiti Tun Hussein Onn Malaysia, Susta Inable Engineering Technology Research Centre (SETechRC), Faculty of Civil Engineering Technology, Pagoh Education Hub, 84600, Pagoh, Muar, Johor, Malaysia
  • Universiti Tun Hussein Onn Malaysia, Research Centre for Soft Soil (ReCeSS), Institute of Integrat Edengineering, 86400 Batu Pahat , Johor, Malaysia
autor
  • Universiti Tun Hussein Onn Malaysia Faculty of Engineering Technology, Department of Civil Engineering Technology, Pagoh Education Hub, 84600, Pagoh, Muar, Johor, Malaysia
autor
  • Universiti Tun Hussein Onn Malaysia Faculty of Engineering Technology, Department of Civil Engineering Technology, Pagoh Education Hub, 84600, Pagoh, Muar, Johor, Malaysia
autor
  • Universiti Tun Hussein Onn Malaysia Faculty of Engineering Technology, Department of Civil Engineering Technology, Pagoh Education Hub, 84600, Pagoh, Muar, Johor, Malaysia
  • Universiti Malaysia Perlis (UniMaP), Centre of Excellence Geopolymer & Green Technology (CEGeoGTech), 01000 Perlis, Malaysia
autor
  • Czestochowa University of Technology, Faculty of Production Engineering and Materials Technology. Department of Physics, 19 Armii Krajowej Av., 42-200 Czestochowa, Poland
  • Universiti Malaysia Perlis (UniMaP), Centre of Excellence Geopolymer & Green Technology (CEGeoGTech), 01000 Perlis, Malaysia
Bibliografia
  • [1] T. Wallace, D. Gibbons, M. O’dwyer, T.P. Curran, International evolution of fat, oil and grease (FOG) waste management - A review, J. Environ. Manage. 187, 424-435 (2017).
  • [2] N. Suhani, R. Maya, S. Radin, H. Awang, Feasibility of banana (Musa sapientum) trunk biofibres for treating kitchen key words no. Vinod 2012 (2017).
  • [3] R. Parwin, R. Karar Paul, Phytoremediation of kitchen wastewater using eichhornia crassipes, J. Environ. Eng. 145, 6, 04019023 (2019).
  • [4] P. Darvehei, P.A. Bahri, N.R. Moheimani, Model development for the growth of microalgae: A review, Renew. Sustain. Energy Rev. 97, July, 233-258 (2018).
  • [5] L.U.Z.E. Gonzalez, Increased growth of the microalga chlorella vulgaris when coimmobilized and cocultured in alginate beads with the plant-growth-promoting bacterium azospirillum brasilense 66, 4, 1527-1531 (2000).
  • [6] V. Abirama, R.M.S.R. Mohamed, A. Al-gheethi, M. Abdul Malek, A.H.M. Kassim, Meat processing wastewater phycoremediation by Botryococcus sp.: a biokinetic study and a techno-economic analysis, Sep. Sci. Technol. 56, 3, 577-591 (2021).
  • [7] Y.A. Mørch, I. Donati, B.L. Strand, G. Skjåk-Bræk, Effect of Ca2+, Ba2+, and Sr2+ on alginate microbeads, Biomacromolecules 7, 5, 1471-1480 (2006).
  • [8] H.X. Chang, Y. Huang, Q. Fu, Q. Liao, X. Zhu, Kinetic characteristics and modeling of microalgae chlorella vulgaris growth and Co2 biofixation considering the coupled effects of light intensity and dissolved inorganic carbon 206. Elsevier Ltd, (2016).
  • [9] P.K. Kumar, S.V. Krishna, S.S. Naidu, K. Verma, D. Bhagawan, V. Himabindu, Biomass production from microalgae chlorella grown in sewage, kitchen wastewater using industrial Co2 emissions: comparative study, Carbon Resour, Convers. 2, 2, 126-133 (2019).
  • [10] X. Zheng et al., Increasing municipal wastewater BNR by using the preferred carbon source derived from kitchen wastewater to enhance phosphorus uptake and short-cut, Chem. Eng. J. (2018).
  • [11] N.M. Ramli, M.C.J. Verdegem, F.M. Yusoff, M.K. Zulkifely, J.A.J. Verreth, Removal of ammonium and nitrate in recirculating aquaculture systems by the epiphyte stigeoclonium nanum immobilized in alginate beads, Aquac. Environ. Interact. 9, 213-222 (2017).
  • [12] Q. Emparan, Y. Sing, M.K. Danquah, R. Harun, Journal of water process engineering cultivation of nannochloropsis sp. Microalgae in palm oil mill effluent (POME) media for phycoremediation and biomass production: effect of microalgae cells with and without beads, J. Water Process Eng. 33, 101043 (2020).
  • [13] S. Cao et al., Characteristics of an immobilized microalgae membrane bioreactor (iMBR): nutrient removal, microalgae growth, and membrane fouling under continuous operation, Algal Res. 51, 102072 (2020).
  • [14] N. Apandi, R.M.S.R. Mohamed, A.I.A. Abuala, A.A. Amhimmid, Integrated growth potential of scenedesmus sp. using public market wastewater via phycoremediation process, Int. J. Integr. Eng. 12, 4, 290-299, 2020.
  • [15] S. Banerjee, P. Balakdas, K. Sambhav, C. Banerjee, Effect of alginate concentration in wastewater nutrient removal using alginate-immobilized microalgae beads: uptake kinetics and adsorption studies, Biochem. Eng. J. 149, no. January, 107241 (2019).
  • [16] H. Khatoon et al., Bioresource technology immobilized tetraselmis sp. for reducing nitrogenous and phosphorous compounds from aquaculture wastewater, Bioresour. Technol. 338, no. May, 125529 (2021).
  • [17] K. Katam, D. Bhattacharyya, Simultaneous treatment of domestic wastewater and bio-lipid synthesis using immobilized and suspended cultures of microalgae and activated sludge, J. Ind. Eng. Chem. 69, 295-303 (2019).
  • [18] R. Whitton, A. Le Mével, M. Pidou, F. Ometto, R. Villa, B. Jefferson, Influence of microalgal n and p composition on wastewater nutrient remediation, Water Res. 91, 371-378 (2016).
  • [19] J.H. Kim, Y.J. Kang, K. Il Kim, S.K. Kim, J.H. Kim, Toxic effects of nitrogenous compounds (ammonia, nitrite, and nitrate) on acute toxicity and antioxidant responses of juvenile olive flounder, paralichthys olivaceus, Environ. Toxicol. Pharmacol. 67, no. August 2018, 73-78 (2019).
  • [20] G. Mujtaba, M. Rizwan, K. Lee, Removal of nutrients and COD from wastewater using symbiotic co-culture of bacterium pseudomonas putida and immobilized microalga chlorella vulgaris, J. Ind. Eng. Chem. 49, 145-151 (2017).
  • [21] T. Mehrotra, S. Dev, A. Banerjee, A. Chatterjee, R. Singh, S. Aggarwal, Use of immobilized bacteria for environmental bioremediation: a review, J. Environ. Chem. Eng. 9, 5, 105920 (2021).
  • [22] Q. Emparan, R. Harun, Y.S. Jye, Phycoremediation of treated palm oil mill effluent (tpome) using nannochloropsis sp. Cells immobilized in the biological sodium alginate beads: effect of pome concentration, Bioresources 14, 4, 9429-9443(2021).
Uwagi
1. Special gratitude goes to the Laboratory Environment at Universiti Tun Hussein Onn Malaysia (UTHM) for providing the facilities for this study. The financial contribution provided by GPPS (Vote: H733).
2. Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1374edf0-7ada-4704-8762-de647384a161
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.