PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

High-Temperature Two-Stage Subcritical Heat Pump Running on Environmentally Friendly Refrigerants

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the design of a two-stage subcritical compressor heat pump operating in an air-to-water system and running on environmentally friendly refrigerants. The pump is dedicated to buildings where there is a high-temperature central heating system and wall-mounted radiators are used as heat receivers. The first stage of the unit was supplied with R290 refrigerant and the second stage with R1234 ze(E) refrigerant. The nominal heating power of the unit is 10kW for a lower source temperature in the range -20°C÷10°C. The unit's refrigeration system was designed and simulation tests were carried out to determine the unit's operating parameters for the lower source temperature in the range -20°C÷10°C, the condensation temperature of the stage I refrigerant for values: 20°C, 25°C, 30°C and the condensation temperature of the stage II refrigerant in the range 30°C÷60°C. The value of the coefficient of performance (COP) was determined in relation to the heating power generated in stages I and II to the electricity consumed, which value, depending on the operating parameters, ranges from 2.55 to 5.6. The value of the COP related to the heating power received from the stage II condenser to the total power consumed by the stage I and II compressor, depending on the operating parameters, ranges from 1.5 to 2.9. It was found that by using a stepless adjustment of the volumetric efficiency of the stage I and II compressor, it is possible to match the heating power of stage I to the cooling power of stage II and thus increase the COP value by 50%.
Twórcy
  • Institute of Mechanical Engineering, Warsaw University of Life Sciences, ul. Nowoursynowska 164, 02-787 Warszawa, Poland
  • Institute of Mechanical Engineering, Warsaw University of Life Sciences, ul. Nowoursynowska 164, 02-787 Warszawa, Poland
Bibliografia
  • 1. Announcement by the Minister of Investment and Development of 8 April 2019 on the publication of the consolidated text of the Regulation of the Minister of Infrastructure on the technical conditions to be met by buildings and their location. Dz. U /Journal of Laws/ of 2019, item 1065, Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20190001065.
  • 2. Alsabry A., Szymański K., Michalak B. Energy, economic and environmental analysis of alternative, high-efficiency sources of heat and energy for multi-family residential buildings in order to increase energy efficiency in Poland. Energies 2023; 16(6): 2673. https://doi.org/10.3390/en16062673.
  • 3. European Commision. A European Green Deal. Striving to Be the First Climate-Neutral Continent. Available online: European Parliament. Directive 2018/844 of the European Parliament and of the Council of 30 May 2018 Amending Directive 2010/31/EU on the Energy Performance of Buildings and Directive 2012/27/EU on the Energy Efficiency. Off. J. Eur. Union 2018, L156, 75–91. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32018L0844 (accessed on 5 February 2024).
  • 4. https://portpc.pl/polski-rynek-pomp-ciepla-po-trzech-kwartalach-2023-r-jakie-sa-perspektywy-wzrostu/(Accessed: 02 February 2024).
  • 5. Rogdakis E. D., Alexis G. K. Design and parametric investigation of an ejector in an air-conditioning system. Applied Thermal Engineering 2000; 20(2): 213–226, https://doi.org/10.1016/S1359-4311(99)00013-7.
  • 6. Rudonja N, Gojak M, Zlatanović I. Todorović R.: Thermodynamic analysis of a cascade heat pump incorporated in high-temperature heating system. Journal of Mechanical Engineering 2020; 66: 677–683. https://doi.org/10.5545/sv-jme.2020.6836.
  • 7. Ivanovski, I., Goričanec, D., Salamunić, J., Žagar, T. The comparison between two high-temperature heat-pumps for the production of sanitary water. Journal of Mechanical Engineering, 2018; 64(7–8): 437–442. https://doi.org/10.5545/sv-jme.2017.5082.
  • 8. Islam H., Jollands M., Setunge S., Haque N., Bhuiyan M.A. Life cycle assessment and life cycle cost implications for roofing and floor designs in residential buildings. Energy Build. 2015; 104: 250–263. https://doi.org/10.1016/j.enbuild.2015.07.017.
  • 9. PN-EN 442-2:2015-02 Grzejniki i konwektory -- Część 2: Moc cieplna i metody badań [Radiators and convectors -- Part 2: Thermal capacity and test methods].
  • 10. Szymańska, E. J. Analysis of residential buildings in Poland for potential energy renovation toward zero-emission construction, Energies 2022; 15(24): 9327. https://doi.org/10.3390/en15249327.
  • 11. Koczyk H. Ogrzewnictwo praktyczne. Projektowanie, montaż, certyfikacja energetyczna, eksploatacja, wydanie II uzupełnione 2009. Wydawnictwo SYSTHERM Danuta Gazińska s. j.
  • 12. Technical Data Book, EHS Mono R290 Pump for Europe. Samsung, 202313. Obstawski P. Bakoń T. Gajkowski J. Analiza dynamicznych właściwości procesu wymiany ciepła w skraplaczu pompy ciepła. Ciepłownictwo, Ogrzewnictwo, Wentylacja 2016; 2: 61–65.
  • 14. Goričanec, D. Rudonja, N., Komatina, M., Andrejević, S., Krope, J., Zlatanović, I. Cascade type geothermal heat pump – economic analysis and environmental impact, KGH Conference Proceedings 2009; 140–146. https://doi.org/10.24084/repqj07.398.
  • 15. Bertsch, S. S., Groll, E. A. Two-stage air-source heat pump for residential heating and cooling applications in northern U.S. climates. International Journal of Refrigeration 2008; 31(7): 1282–1292. https://doi:10.1016/j.ijrefrig.2008.01.006.
  • 16. Jung, H. W., Kang, H., Yoon, W. J., Kim, Y. Performance comparison between a single-stage and a cascade multi-functional heat pump for both air heating and hot water supply. International Journal of Refrigeration 2013; 36(5): 1431–1441. https://doi.org/10.1016/j.ijrefrig.2013.03.003.
  • 17. Gutkowski K.M., Butrymowicz D.J. Chłodnictwo i klimatyzacja. WNT. 2013.
  • 18. Butrymowicz D., Baj P., Śmierciew K., Gagan J. Technika chłodnicza. PWN.2021.
  • 19. Butrymowicz D., Gagan J., Śmierciew K., Gutkowski K. Chłodnictwo i klimatyzacja. PWN. 2020.
  • 20. Ma, X., Zhang, Y., Fang, L., Yu, X., Li, X, Sheng, Y., Zhang, Y. Performance analysis of a cascade high temperature heat pump using R245fa and BY-3 as working fluid. Applied Thermal Engineering 2018; 140: 466–475. https://doi.org/10.1016/j.applthermaleng.2018.05.052.
  • 21. Xu, L., Li, E., Xu, Y., Mao, N., Shen, X., Wang, X. An experimental energy performance investigation and economic analysis on a cascade heat pump for high-temperature water in cold region. Renewable Energy 2020; 152, 674–683. https://10.1016/j.renene.2020.01.104.
  • 22. Song, Y., Li, D., Cao, F., Wang, X. Theoretical investigation on the combined and cascade CO2/R134a heat pump systems for space heating. Applied Thermal Engineering 2017; 124: 1457–1470. https://doi.org/10.1016/j.applthermaleng.2017.06.014.
  • 23. Song, Y., Li, D., Yang, D., Jin, L., Cao, F., Wang, X. Performance comparison between the combined R134a/CO2 heat pump and cascade R134a/CO2 heat pump for space heating. International Journal of Refrigeration 2017; 74: 592–605. https://doi.org/10.1016/j.ijrefrig.2016.12.001.
  • 24. European Commision. Regulation (EU) No 517/2014 of the European Parliament and of the Council of 16 April 2014 on fluorinated greenhouse gases and repealing Regulation (EC) No 842/2006, Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32014R0517.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-13710317-f03a-4399-9f38-435863fe17e3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.