PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Biodegradable scaffolds for bone defect treatment

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Additive techniques in dog orthopedics has recently emerged as a valuable approach in fabricating individualized implants for receiver-specific needs. The scaffolds made by 3D printing are used to replaces bones damaged by injuries sustained in accidents, tumour resections and defects resulting from disease e.g. osteoporosis. In this way can promote the growth and reconstruction of bone defects structure. These implants should have the right properties to ensure the right conditions for bone fusion. It is also important to determine the time of degradation, which is associated with a significant loss of mechanical properties.
Rocznik
Opis fizyczny
Bibliogr. 33 poz., rys., tab., wykr.
Twórcy
  • Department of Biomaterials and Medical Devices Engineering, Faculty of Biomedical Engineering, Silesian University of Technology, Zabrze, Poland
  • SKN SYNERGIA, Department of Biomaterials and Medical Devices Engineering, Faculty of Biomedical Engineering, The Silesian Technical University, Zabrze, Poland
autor
  • Department of Biomaterials and Medical Devices Engineering, Faculty of Biomedical Engineering, Silesian University of Technology, Zabrze, Poland
  • Department of Biomaterials and Medical Devices Engineering, Faculty of Biomedical Engineering, Silesian University of Technology, Zabrze, Poland
  • CABIOMEDE Sp. z o.o., Kielce, Poland
Bibliografia
  • [1] ALIZADEH-OSGOUEI M., LI Y., VAHID A., ATAEE A., WEN C., Hight strength porous PLA gyroid scaffolds manufactures via fused deposition modeling for tissue-engineering applications, Smart Mater Med, 2021, 2, 15-25, DOI: 10.1016/j.smaim.2020.10.003
  • [2] BAKHTIARI H., NOURI A., KHAKBIZ M., TOLOUEI-RAD M., Fatigue behaviour of loadbearing polymeric bone scaffolds: A review, Acta Biomaterialia, 2023, 172, 16-37, DOI: 10.1016/j.actbio.2023.09.048
  • [3] BORDELO J.P.A., DIAS M.I.R., CARDOSO L.M.M.L., REQUICHA J.M.F., VIEGAS C.A.A., BARDET J.F., A 3D printed model for radiuscurvus surgical treatment planning in a dog, Pesqui. Vet. Bras.2018, 38, 1178–1183, DOI: 10.1590/1678-5150-PVB-5209
  • [4] BORDONI B., BLACK A. C., VARACALLO M., Anatomy, Tendons, [Updated 2023 Apr 1]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK513237/.
  • [5] COOLEY DM, WATERS DJ, Skeletal neoplasms of small dogs: a retrospective study and literature review, J Am Anim Hosp Assoc, 33, 1, 1997, 11-23, DOI: 10.5326/15473317-33-1- 11.
  • [6] DE TORA M.D., BOUDRIEAU R.J., Complex angular and torsional deformities (Distal femoral malunions): Preoperative planningusing stereolithography and surgical correction with locking plate fixation in four dogs., Vet. Comp. Orthop. Traumatol., 2016, 29, 416–425, DOI: 10.3415/VCOT-15-08-0145
  • [7] GAROT C., BETTEGA G., PICART C., Additive manufacturing of material scaffolds for bone regeneration: toward application in the clinics, Adv Funct Mater, 31, 5, 2021, 1-30, DOI: 10.1002/adfm.202006967.
  • [8] GOGOLEWSKI S., MAINIL-VARLET P., The effect of thermal treatment on sterility, molecular and mechanical properties of various polylactides. I. Poly(L-lactide), Biomaterials, 1996, 17, 5, 523-529, DOI: 10.1016/0142-9612(96)82727-x.
  • [9] GREGOR A., FILOVÁ E., NOVÁK. M., KRONEK J., CHLUP H., BUZGO M., BLAHNOVA V., LUKASOVA V., BARTOS M., NECAS A.., HOSEK J., Designing of PLA scaffolds for bone tissue replacement fabricated by ordinary commercial 3D printer. J Biol Eng , 2017, 11, 31, DOI: 10.1186/s13036-017-0074-3
  • [10] GUO Z., YANG C., ZHOU Z., CHEN S., LI F., Characterization of biodegradable poly (lactic acid) porous scaffolds prepared using selective enzymatic degradation for tissue engineering, RSC Adv, 7, 2017, 34063-34070, DOI: 10.1039/C7RA03574H.
  • [11] JANDYAL A., CHATURVEDI I., WAZIR I., RAINA A., UL HAG MI., 3D printing – A review of processes, materials and applications in industry 4.0, SUSOC, 2022, 3, 33-42, DOI: 10.1016/j.susoc.2021.09.004
  • [12] KOMAR E., WOJNOWSKI T., BALICKI I., Operative treatment of asynchronous growth of the forearm bone in dogs (in Polish), Medycyna Weterynaryjna, 50, 09, 1994, 449-453.
  • [13] LAM G., KIM S.K., Three-Dimensional Computer-Assisted Surgical Planning and Use of 3- Dimensional Printing in the Repair ofa Complex Articular Femoral Fracture in a Dog.Vet. Orthop. Soc.2019,32, 12–18, DOI: 10.1055/s-0038-1676062 [14] LEE H.R., ADAM G.O., YANG D.K., TUNGALAG T., LEE S.J., KIM J.S., KANG H.S., KIM S.J., KIM N.S., An easy and economicalway to produce a three-dimensional bone phantom in a dog with antebrachial deformities, Animals, 2020, 10, 1445, DOI: 10.3390/ani10091445
  • [15] LONGO F., PENELAS A., GUTBROD A., POZZI A., Three-dimensional computer-assisted corrective osteotomy with a receiver-specificsurgical guide for an antebrachial limb deformity in two dogs, Schweiz. Arch. Tierheilkd, 2019, 161, 473–479, DOI: 10.17236/sat00216
  • [16] MEMARIAN P., PISHAVAR E., ZANOTTI F., TRENTINI M., COMPONOGARA F., SOLIANI E., GARGIULO P., ISOLA M., ZAVAN B., Active materials for 3D printing in small animals: Current modalities and future directions for orthopedic applications, Int J Mol Sci., 2022, 23(3), 1-25, DOI: 10.3390/ijms23031045
  • [17] MIGDALSKA A., BONECKA J., FRYMUS J., TRĘBACZ P., DEGÓRSKA B., KOWALCZYK P., GALANTY M., STERNA J., A case report of an open contaminated tibia fracture treatment with external fixator in dog (in Polish), Życie weterynaryjne, 2016, 91(7), 511-515.
  • [18] MORAWSKA-CHOCHÓŁ A., CHŁOPEK J., DOMALIK P., BOGUŃ M New composite materials based on polylactide matrix for intramedullary nails (in Polish), Engineering of Biomaterials, 14, 2011, 106-108.
  • [19] OLADAPO B., ZAHEDI S. A., ADEOYE A. O. O., 3D printing of bone scaffolds with hybrid biomaterials, Comp B, 2019, 158, 428-436, DOI: 10.1016/j.compositesb.2018.09.065
  • [20] PN-EN ISO 178:2011 Plastics - Determination of flexural properties (Tworzywa sztuczne : oznaczanie właściwości przy zginaniu), 2011.
  • [21] PN-EN ISO 604:2006 Plastics – Determination of compressive properties (Tworzywa sztuczne: oznaczanie właściwości przy ściskaniu), 2006.
  • [22] REZWAN K., CHEN Q.Z., BLAKER J.J., BOCCACCINI A.R., Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering, Biomaterials, 27, 18, 2006, 3413-3431, DOI: 10.1016/j.biomaterials.2006.01.039
  • [23] ROJEK M., Methodology of diagnostic testing of polymeric matrix laminate composite materials (in Polish), 2011, Accessed: Jan. 25, 2023. [Online]. Available: http://openaccesslibrary.com/vol02/wprowadzenie.pdf
  • [24] ROZEMA FR, BOS RRM, BOERING G., VAN ASTEN JAAM, NIJENHUIS AJ, PENNINGS J., The effects of different steam-sterilization programs on material properties of poly(Llactide), J Appl Biomater, 2, 1, 1991, 23-28, DOI: 10.1002/jab.770020104
  • [25] SAPIERZYŃSKI R., Osteosarcoma in dogs (in Polish), Życie weterynaryjne, 92, 08, 2017, 562- 571
  • [26] SAPIERZYŃSKI R., Neoplasms of the musculoskeletal system in dogs and in cats. Part II. Chondrosarcoma, multilobular osteochondrosarcoma and feline osteochondromatosis (in Polish), Życie weterynaryjne, 80, 10, 2005, 633-637
  • [27] SCHUSTER AJ, DE ABREU JLB, POLA NM, WITEK L, COELHO PG, FAOT F., Histomorphometric analysis of implant osseointegration using hydrophilic implants in diabetic rats, Clin Orac Investig, 25, 10, 2021, 5867 – 5878, DOI: 10.1007/S00784-021-03892-X
  • [28] SIQUEIRA R., FERREIRA AJ, RIZZANTE FAP, MOURA GF, MENDONÇA DBS, DE MAGALHÃES D., CIMÕES R, MENDONÇA G, Hydrophilic titanium surface modulate early stages of osseointegration in osteoporosis, J Periodontal Res, 56, 2, 2021, 351-362, , DOI: 10.1111/jre.12827.
  • [29] SPEIGHT JG., Monomers, polymers, and plastics. In Handbook of Petrochemical Processes, 421-466, CRC Press, 2019.
  • [30] STACHUREK I., Problems with the biodegradation of plastics in the environment (in Polish), Zeszyty Naukowe Wyższej Szkoły Zarządzania Ochroną Pracy w Katowicach, 1, 8, 2012, 74- 108.
  • [31] TRĘBACZ P., TRĘBACZ E., STERNA J., Pathological fracture of the humerus in a dog caused by a simple bone cyst (in Polish), Med. Weter., 2015, 71(7), 458-461.
  • [32] WANG W., ZHANG B., LI M., LI J., ZHANG C., HAN Y., WANG L., WANG K., ZHOU C., LIU L., FAN Y., ZHANG X., 3D printing pf PLA/n-HA composite scaffolds with customized mechanical properties and biological functions for bone tissue engineering, Compos. B Eng., 2021, 224, DOI: 10.1016/j.compositesb.2021.109192
  • [33] ZWIERUCHO M., STROKOWSKA N., Most common bone and internal organ injuries caused by road traffic accidents - diagnostic imaging and surgical treatment (in Polish), Weterynaria w Praktyce, 2018, 15, 06, 38-50.
Uwagi
Brak numeracji stron
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-136cd1e9-1c98-4541-ba09-15af7e444b10
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.