Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The aim of this work was to obtain polymer fibers by the emulsion electrospinning. For this purpose, polycaprolactone (PCL) was used, which was modified before the electrospinning stage with micelles obtained by the oil-in-water (O/W) emulsion method. Micelles were obtained by combining the non-ionic surfactant Tween 80 or Triton X-100 used at different concentrations with the amino acid alanine. The obtained fibrous substrates had a typical unimodal fiber size distribution and their average size was in the range of 590-800 nm. The effectiveness of the emulsion electrospinning process was confirmed by Fourier Transform Infrared Spectroscopy - Attenuated Total Reflectance (FTIR-ATR) showing the presence of surfactants. The addition of micelles to the polymer solution significantly reduces the contact angle of nonwoven fabrics: from 120° (for PCL) to ~20-30° for surfactant-loaded nonwovens, and the micellar form allows tracking the release of alanine into the solution (UV-Vis). The combination of the core-shell- -morphology of the emulsion electrospun fibers allows comparable amino acid release times. There were no significant differences in both the amount of alanine released and the rate of its release between PCL/ Tween80/alanine and PCL/Triton X-100/alanine fibers, which were characterized by a similar fiber size.
Czasopismo
Rocznik
Tom
Strony
20--25
Opis fizyczny
Bibliogr. 21 poz., tab., wykr., zdj.
Twórcy
autor
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland
autor
- Department of Ceramics and Refractories, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland
- Department of Cosmetology, Institute of Applied Sciences, Faculty of Motor Rehabilitation, University of Physical Education in Krakow, al. Jana Pawła II 78, 31-571 Krakow, Poland
autor
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland
Bibliografia
- [1] M.P. Nikolova, M.S. Chavali: Recent advances in biomaterials for 3D scaffolds: A review. Bioact. Mater. 4 (2019) 271-292. https://doi.org/10.1016/j.bioactmat.2019.10.005.
- [2] K. Klimek, G. Ginalska: Proteins and peptides as important modifiers of the polymer scaffolds for tissue engineering. Polymers (Basel). 12(844) (2020) 1-38. https://doi.org/10.3390/polym12040844
- [3] K. Hosoyama, C. Lazurko, M. Muñoz, C.D. McTiernan, E.I. Alarcon: Peptide-based functional biomaterials for soft-tissue repair. Front. Bioeng. Biotechnol. 7 (AUG) (2019) https://doi. org/10.3389/fbioe.2019.00205.
- [4] A.S. Walvekar, R. Srinivasan, R. Gupta, S. Laxman: Methionine coordinates a hierarchically organized anabolic program enabling proliferation. Mol. Biol. Cell 29 (26) (2018) 3183-3200. https://doi. org/10.1091/mbc.E18-08-0515.
- [5] N. Ron-Harel, J.M. Ghergurovich, G. Notarangelo, M.W. LaFleur, Y. Tsubosaka, A.H. Sharpe, J.D. Rabinowitz, M.C. Haigis. T Cell activation depends on extracellular alanine. Cell Rep. 28(12) (2019) 3011-3021.e4. https://doi.org/10.1016/j.celrep.2019.08.034.
- [6] H. Frizzell, T. Ohlsen, K.A. Woodrow: Protein-loaded emulsion electrospun fibers optimized for bioactivity retention and pH-controlled release for peroral delivery of biologic therapeutics. Int. J. Pharm. 533(1) (2017) 99. https://doi.org/10.1016/J.IJPHARM.2017.09.043.
- [7] A. Luraghi, F. Peri, L. Moroni: Electrospinning for drug delivery applications: A review, J. Control. Release 334 (2021) 463-484. https://doi.org/10.1016/j.jconrel.2021.03.033.
- [8] U. Angkawinitwong, S. Awwad, P.T. Khaw, S. Brocchini, G.R. Williams: Electrospun formulations of bevacizumab for sustained release in the eye. Acta Biomater. 64 (2017) 126-136. https://doi.org/10.1016/j.actbio.2017.10.015.
- [9] J. Wang, M. Windbergs; Controlled dual drug release by coaxial electrospun fibers – Impact of the core fluid on drug encapsulation and release. Int. J. Pharm. 556 (2019) 363-371. https://doi. org/10.1016/J.IJPHARM.2018.12.026.
- [10] J. Hu, M.P. Prabhakaran, X. Ding, S. Ramakrishna: Emulsion electrospinning of polycaprolactone: Influence of surfactant type towards the scaffold properties. J. Biomater. Sci. Polym. Ed. 26 (1) (2015) 57-75. https://doi.org/10.1080/09205063.2014.982241.
- [11] C. Mouro, M. Simões, I.C. Gouveia, B. Xu: Emulsion Electrospun Fiber Mats of PCL/PVA/Chitosan and Eugenol for Wound Dressing Applications. Adv. Polym. Technol. (2019) https://doi.org/10.1155/2019/9859506.
- [12] L. Ma, X. Shi, X. Zhang, L. Li: Electrospinning of polycaprolacton/chitosan core-shell nanofibers by a stable emulsion system, Colloids Surfaces A Physicochem. Eng. Asp. 583 (August) (2019) 123956. https://doi.org/10.1016/j.colsurfa.2019.123956.
- [13] A.O. Basar, S. Castro, S. Torres-Giner, J.M. Lagaron, H. Turkoglu Sasmazel: Novel poly(ε-caprolactone)/gelatin wound dressings prepared by emulsion electrospinning with controlled release capacity of Ketoprofen anti-inflammatory drug, Mater. Sci. Eng. C 81 (2017) 459-468. https://doi.org/10.1016/j.msec.2017.08.025.
- [14] B. Baskapan, A. Callanan: Electrospinning fabrication methods to incorporate laminin in polycaprolactone for kidney tissue. Tissue Eng. Regen. Med. (2021) https://doi.org/10.1007/s13770-021-00398-1.
- [15] B. Arechabala, C. Coiffard, P. Rivalland, L.J.M. Coiffard, Y. De Roeck-Holtzhauer: Comparison of cytotoxicity of various surfactants tested on normal human fibroblast cultures using the neutral red test, MTT assay and LDH release. J. Appl. Toxicol. 19 (3) (1999) 163-165. https://doi.org/10.1002/(SICI)1099--1263(199905/06)19:3<163::AID-JAT561>3.0.CO;2-H.
- [16] P.M. Johnson, K.E. Knewtson, J.G. Hodge, J.M. Lehtinen, A.S. Trofimoff, D.J. Fritz, J.L. Robinson: Surfactant location and internal phase volume fraction dictate emulsion electrospun fiber morphology and modulate drug release and cell response. Biomater. Sci. 9 (4) (2021) 1397-1408. https://doi.org/10.1039/d0bm01751e.
- [17] V.R.N. Banu, V.R. Babu, S. Rajendran: Investigating the corrosion inhibition efficiency of surgical carbon steel instruments used in medical field. Int. Res. J. Pharm. 8 (12) (2018) 79–90. https://doi.org/10.7897/2230-8407.0812254.
- [18] U. Posadowska, M. Brzychczy-Włoch, E. Pamuła: Gentamicin loaded PLGA nanoparticles as local drug delivery system for the osteomyelitis treatment, Acta Bioeng. Biomech. 17 (3) (2015) 41-47. https://doi.org/10.5277/ABB-00188-2014-02.
- [19] J. Siepmann, N.A. Peppas: Higuchi equation: Derivation, applications, use and misuse, Int. J. Pharm. 418 (1) (2011) 6-12. https://doi.org/10.1016/j.ijpharm.2011.03.051.
- [20] N. Kamaly, B. Yameen, J. Wu, O.C. Farokhzad: Degradable controlled-release polymers and polymeric nanoparticles: Mechanisms of controlling drug release, Chem. Rev. 116 (4) (2016) 2602-2663. https://doi.org/10.1021/acs.chemrev.5b00346.
- [21] L. Yin, K. Wang, X. Lv, R. Sun, S. Yang, Y. Yang, Y. Liu, J. Liu, J. Zhou, Z. Yu: The fabrication of an ICA-SF/PLCL nanofibrous membrane by coaxial electrospinning and its effect on bone regeneration in vitro and in vivo. Sci. Rep. 7 (1) (2017) 1-12. https://doi.org/10.1038/s41598-017-07759-8.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-136cb015-4f40-4492-aea8-d4c0b919288d