PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Actual and reference evapotranspiration for a natural, temperate zone fen wetland : Upper Biebrza case study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Evapotranspiration is the key and predominant component of the water balance in wetlands. Direct evapotranspiration measurements are challenging in wetlands due to their remoteness and high surface water level. This article describes the actual (ETa and reference evapotranspiration (ET0) from a cultivated wet meadow located in the Biebrza National Park - the largest national park in north-east Poland, Central Europe. The data were sourced from a micrometeorological station equipped with an eddy covariance system to measure heat and vapour fluxes and such meteorological elements as radiation balance components, air temperature and humidity. The values of directly measured ETa were presented daily in the context of available energy and ET0. Daily sums of ETa ranged from below 0.2 mm in winter to 6.5 mm in summer. The share of daily sums of ETa in the ET0 usually ranged from 50 to 60%, with extreme values from 10 to 170%. Aside from giving more insight into Biebrza wetlands’ functioning, the actual data produced in this study may be used instead of indirect methods, which were used the most in modelling wetlands areas.
Wydawca
Rocznik
Tom
Strony
62--70
Opis fizyczny
Bibliogr. 52 poz., fot., rys., tab., wykr.
Twórcy
  • Warsaw University of Life Sciences, Faculty of Civil and Environmental Engineering, Institute of Environmental Engineering, Nowoursynowska St, 166, 02-787 Warsaw, Poland
  • Gdansk University of Technology, Faculty of Electronics, Telecommunication and Informatics, Department of Geoinformatics, Gabriela Narutowicza St, 11/12, 80-233 Gdańsk, Poland
  • Warsaw University of Life Sciences, Faculty of Civil and Environmental Engineering, Institute of Environmental Engineering, Nowoursynowska St, 166, 02-787 Warsaw, Poland
  • Warsaw University of Life Sciences, Faculty of Civil and Environmental Engineering, Institute of Environmental Engineering, Nowoursynowska St, 166, 02-787 Warsaw, Poland
  • Warsaw University of Life Sciences, Faculty of Civil and Environmental Engineering, Institute of Environmental Engineering, Nowoursynowska St, 166, 02-787 Warsaw, Poland
Bibliografia
  • Abtew, W. and Melesse, A. (2012) Evaporation and evapotranspiration: Measurements and estimations. Netherlands: Springer.
  • Abtew, W. and Obeysekera, J. (1995) “Lysimeter study of evapotranspiration of cattails and comparison of three methods,” Transactions of the ASAE, 38(1), pp. 121–129.
  • Allen, R.G. et al. (eds.) (2005) The ASCE standardized reference evapotranspiration equation. Washington, DC: ASCE.
  • Anda, A. et al. (2015) “Regional evapotranspiration from a wetland in Central Europe, in a 16-year period without human intervention,” Agricultural and Forest Meteorology, 205, pp. 60–72. Available at: https://doi.org/10.1016/j.agrformet.2015.02.010.
  • Anibas, C. et al. (2012) “A hierarchical approach on groundwater-surface water interaction in wetlands along the upper Biebrza River, Poland,” Hydrology and Earth System Sciences Disscussions, 16, pp. 2329–2346. Available at: https://doi.org/10.5194/hessd-8-9537-2011.
  • Aubinet, M., Vesala, T. and Papale, D. (eds.) (2012) Eddy covariance: A practical guide to measurement and data analysis. Dordrecht, Heidelberg, London, New York: Springer.
  • Berezowski, T., Chormański, J. and Batelaan, O. (2015) “Skill of remote sensing snow products for distributed runoff prediction,” Journal of Hydrology, 524, pp. 718–732. Available at: https://doi.org/10.1016/j.jhydrol.2015.03.025.
  • Berezowski, T. et al. (2019) “Spatiotemporal dynamics of the active perirheic zone in a natural wetland floodplain,” Water Resourches Research, 55(11), pp. 9544–9562. Available at: https://doi.org/10.1029/2019WR024777.
  • Burba, G. et al. (2012) “Calculating CO 2 and H 2O eddy covariance fluxes from an enclosed gas analyzer using an instantaneous mixing ratio,” Global Change Biology, 18, pp. 385–399. Available at: https://doi.org/10.1111/j.1365-2486.2011.02536.x.
  • Carlson Mazur, M.L., Wiley, M.J. and Wilcox, D.A. (2014) “Estimating evapotranspiration and groundwater flow from water-table fluctuations for a general wetland scenario,” Ecohydrology, 7, pp. 378–390. Available at: https://doi.org/10.1002/eco.1356.
  • Chojnicki, B.H. et al. (2012) “Sedge community (Caricetum elatae) carbon dioxide exchange seasonal parameters in a wetland,” Polish Journal of Environmental Studies, 21(3), pp. 579–587.
  • Ciężkowski, W. et al. (2018) “Modelling wetland growing season rainfall interception losses based on maximum canopy storage measurements,” Water, 10(1), pp. 1–16.
  • Council Directive (1992) “Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora,” Official Journal, L 206, consolidated version 1.1.2007. Available at: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A31992L0043 (Accessed: April 12, 2024).
  • Dembek, W., Oświt, J. and Rycharski, M. (2005) “Torfowiska i torfy w Pradolinie Biebrzy [Peatlands and peats in the ice-marginal Biebrza river valley],” in A. Dyrcz and C. Werpachowski (eds.) Przyroda Biebrzańskiego Parku Narodowego [Nature of the Biebrza National Park]. Osowiec-Twierdza: Biebrzanski Park Narodowy Press, pp. 33–58.
  • Drexler, J.Z. et al. (2004) “A review of models and micrometeorological methods used to estimate wetland evapotranspiration,” Hydrological Processes, 18, pp. 2071–2101. Available at: https://doi.org/10.1002/hyp.1462.
  • Dudley, N. (ed.) (2021) Global wetland outlook: Special edition 2021. Gland, Switzerland: Secretariat of the Convention on Wetlands. Available at: https://www.global-wetland-outlook.ramsar.org/report-1 (Accessed: April 12, 2024).
  • Fermor, P.M. et al. (2001) “Reedbed evapotranspiration rates in England,” Hydrological Processes, 15, pp. 621–631. Available at: https://doi.org/10.1002/hyp.174.
  • Fortuniak, K. et al. (2013) “Surface energy balance and exchange of greenhouse gases in Eastern Poland wetland – A new EC site in Biebrza National Park,” in M. Reckermann and S. Köppen (ed.) 7th Study Conference on BALTEX, 10–14 June 2013, Borgholm, Conference Proceedings, pp. 18–19.
  • Fortuniak, K. and Pawlak, W. (2016) Atlas parametrów meteorologicznych na stacji pomiarowej w Kopytkowie (Biebrzański Park Narodowy) w roku 2013 [Atlas of meteorological elements at the Kopytkowo station (Biebrza National Park) in 2013]. Łódź: Wydaw. Katedra Meteorologii i Klimatologii UŁ.
  • Gardner, R.C. and Finlayson, C.M. (2018) “Global Wetland Outlook: State of the world’s wetlands and their services to people,” Stetson University College of Law Legal Studies Research Paper Series. Research Paper, 2020-5. Gland, Switzerland: Ramsar Convention Secretariat. Available at: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3261606 (Accessed: April 12, 2024).
  • Grygoruk, M. et al. (2014) “Evapotranspiration of bush encroachments on a temperate mire meadow – A nonlinear function of landscape composition and groundwater flow,” Ecological Engineering, 73, pp. 598–609. Available at: https://doi.org/10.1016/j.ecoleng.2014.09.041.
  • Huryna, H., Brom, J. and Pokorny, J. (2014) “The importance of wetlands in the energy balance of an agricultural landscape,” Wetlands Ecology and Management, 22, pp. 363–381. Available at: https://doi.org/10.1007/s11273-013-9334-2.
  • Kardel, I. et al. (2009) “Water management decision support system for Biebrza National Park,” Environment Protection Engineering, 35(2), pp. 173–180.
  • Kasperska-Wołowicz, W. and Łabędzki, L. (2006) “Climatic and agricultural water balance for grasslands in Poland using the Penman-Monteith method,” Annals of Warsaw Agricultural University – SGGW. Land Reclamation, 37, pp. 93–100.
  • Keiser, F.M. et al. (2014) “A new look at the Flood Pulse Concept: The (ir) relevance of the moving littoral in temperate zone rivers,” Ecological Engineering, 64, pp. 85–99. Available at: https://doi.org/10.1016/j.ecoleng.2013.12.031.
  • Kleniewska, M. et al. (2015) “Diurnal course of the main heat balance components of a marshy meadow in the lower Biebrza River valley,” Polish Journal of Environmental Studies, 24(3), pp. 945–950. Available at: https://doi.org/10.15244/pjoes/30932.
  • Kljun, N. et al. (2004) “A simple parametrization for flux footprint predictions,” Boundary-Layer Meteorology, 112(3), pp. 503–523. Available at: https://doi.org/10.1023/B:BOUN.0000030653.71031.96.
  • Kljun, N. et al. (2015) “A simple two-dimensional parameterisation for flux footprint prediction (FFP),” Geoscientific Model Development, 8(11), pp. 3695–3713. Available at: https://doi.org/10.5194/gmd-8-3695-2015.
  • Kossowska-Cezak, U. (1984) “Climate of the Biebrza ice-marginal valley,” Polish Ecological Studies, 10(3–4), pp. 253–270.
  • Kowalska, N. et al. (2013) “Measurements of methane emission from a temperate wetland by the eddy covariance method,” International Agrophysics, 27(3), pp. 283–289. Available at: https://doi.org/10.2478/v10247-012-0096-5.
  • Mauder, M. et al. (2013) “A strategy for quality and uncertainty assessment of long-term eddy-covariance measurements,” Agricultural and Forest Meteorology, 169, pp. 122–135. Available at: https://doi.org/10.1016/j.agrformet.2012.09.006.
  • Mauder, M. and Foken, T. (2004) Documentation and instruction manual of the eddy covariance software package TK2. Arbeitsergebnisse, 26. Universität Bayreuth. Available at: https://epub.uni-bayreuth.de/id/eprint/884/1/ARBERG026.pdf (Accessed: April 12, 2024).
  • Moncrieff, J.B. et al. (1997) “A system to measure surface fluxes of momentum, sensible heat, water vapour and carbon dioxide,” Journal of Hydrology, 188–189, pp. 589–611. Available at: https://doi.org/10.1016/S0022-1694(96)03194-0.
  • Opdekamp, W. et al. (2012) “Tussocks: Biogenic silica hot-spots in a riparian wetland,” Wetlands, 32(6), pp. 1115–1124. Available at: https://doi.org/10.1007/s13157-012-0341-5.
  • Oświt, J. (1968) “Strefowy układ zbiorowisk roślinnych jako odzwierciedlenie stosunków wodnych w Dolinie Dolnej Biebrzy [The zonal system of plant communities as a reflection of water conditions in the lower Biebrza valley],” Zeszyty Problemowe Postępów Nauk Rolniczych, 83, pp. 217–232.
  • Pereira, L.S. et al. (2023) “Actual and standard crop coefficients for semi-natural and planted grasslands and grasses: a review aimed at supporting water management to improve production and ecosystem services,” Irrigation Science. Available at: https://doi.org/10.1007/s00271-023-00867-6.
  • Poretta-Brandyk, L. et al. (2011) “Automatic calibration of the WetSpa distributed hydrological model for small lowland catchments,” in D. Świątek and T. Okruszko (eds.) Modelling of Hydrological Processes in the Narew Catchment. Geoplanet: Earth and Planetary Sciences. Berlin, Heidelberg: Springer, pp. 89–110. Available at: https://doi.org/10.1007/978-3-642-19059-9_3.
  • Přibáň, K. and Ondok, J.P. (1985) “Heat balance components and evapotranspiration from a sedge-grass marsh,” Folia Geobotanica et Phyttotaxonomica, 20, pp. 41–56. Available at: https://doi.org/10.1007/BF02856464.
  • R Core Team (2022) R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Available at: https://www.R-project.org (Accessed: April 12, 2023).
  • Reichstein, M. et al. (2005) “On the separation of net ecosystem Exchange into assimilation and ecosystem respiration: review and improved algorithm,” Global Change Biology, 11(9), pp. 1424–1439. Available at: https://doi.org/10.1111/j.1365-2486.2005. 001002.x.
  • Reichstein, M. et al. (2016) REddyProc: Data processing and plotting utilities of (half-) hourly eddy-covariance measurements. R package version 0.8-2/r14. Available at: http://R-Forge.R-project.org/projects/reddyproc (Accessed: December 31, 2017).
  • Runkle, B.R.K. et al. (2014) “The surface energy balance and its drivers in a boreal peatland fen of northwestern Russia,” Journal of Hydrology, 511, pp. 359–373. Available at: https://doi.org/10.1016/j.jhydrol.2014.01.056.
  • Siedlecki, M. et al. (2016a) “Międzydobowa zmienność parowania terenowego w obszarach zurbanizowanych i różnych typach roślinności paranaturalnej [Interdiurnal variability of evapotranspiration in urban areas and different types of vegetation backgrounds],” Acta Geografica Lodziensia, 104, pp. 213–222.
  • Siedlecki, M. et al. (2016b) “Wetland evapotranspiration: Eddy covariance measurement in the Biebrza Valley, Poland,” Wetlands, 36(6), pp. 1055–1067. Available at: https://doi.org/10.1007/s13157-016-0821-0.
  • Stan, F.I. et al. (2016) “Study on the evaporation and evapotranspiration measured on the Căldăruşani Lake (Romania),” Procedia Environmental Sciences, 32, pp. 281–289 Available at: https://doi.org/10.1016/j.proenv.2016.03.033.
  • Sun, L. and Song, C. (2008) “Evapotranspiration from freshwater marsh in the Sanjiang Plain, Northeast China,” Journal of Hydrology, 352, pp. 202–210. Available at: https://doi.org/10.1016/j.jhydrol.2008.01.010.
  • Szajda, J. and Guz, T. (1983) “Ewapotranspiracja łąki 3-kośnej i pastwiska na glebie torfowo-murszowej w rejonie kanału Wieprz-Krzna [Ewapotranspiration of a three-cut meadow and a pasture on peat-mucksoil in the Wieprz-Krzna canal region],” Zeszyty Problemowe Postępów Nauk Rolniczych, 277, pp. 85–97.
  • Szejba, D. (2012) “Evapotranspiration of grasslands and pastures in North-Eastern part of Poland,” in A. Irmak (ed.) Evapotranspiration: remote sensing and modelling. Rizeka: InTech, pp. 179–196. Available at: https://doi.org/10.5772/18812.
  • Vickers, D. and Mahrt, L. (1997) “Quality control and flux sampling problems for tower and aircraft data,” Journal of Atmospheric and Oceanic Technology, 14(3), pp. 512–526. Available at: https://doi.org/10.1175/1520-0426(1997)014<0512:QCAFSP>2.0.CO;2.
  • Wassen, M. et al. (2006) “Eco-hydrological functioning of Biebrza wetlands: Lessons for the conservation and restoration of deteriorated wetlands,” in R. Bobbink et al. (eds.) Wetlands: Functioning, Biodiversity Conservation, and Restoration. Ecological Studies, 191, Berlin, Heidelberg: Springer, pp. 285–231. Available at: https://doi.org/10.1007/978-3-540-33189-6_13.
  • Wessel, D.A. and Rouse, W.R. (1994) “Modelling evaporation from wetland tundra,” Bound-Layer Meteorology, 68, pp. 109–130. Available at: https://doi.org/10.1007/BF00712666.
  • Wu, J. et al. (2010) “Evapotranspiration dynamics in a boreal peatland and its impact on the water and energy balance,” Journal of Geophysical Research: Biogeoscienes, 115. Available at: https://doi.org/10.1029/2009JG001075.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-136c3f51-402a-498b-a6e9-351fbd8694b8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.