PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Walking Assist Exoskeletons are a class of assistive devices intended to restore a person's independence. Current powered Exoskeletons suffer from limited usability due to power demands. Furthermore, motors and battery packs are often cumbersome and heavy. A passive walking assist device is one that does not rely on an external power source, instead drawing energy out of the gait cycle itself. This study proposes the development and initial testing of a passive ankle exoskeleton intended to provide a plantarflexion torque assist during the push off phase of gait. The design incorporates a Pneumatic Artificial Muscle as a non-linear elastic element to store and release energy during walking. The device also integrates a novel clutch mechanism design to engage and disengage the spring element about the ankle joint during walking such that it does not impede the ankle motion during swing phase. Mechanical testing demonstrated the prototypes ability to function adequately over the natural range of an ankle joint and generate an ankle torque equal to at least 25% of natural ankle torque during normal walking. Using motion capture and electromyography systems, human testing was performed to examine the gait kinematic and muscle activation when the device is worn, unilaterally. The preliminary results show that the exoskeleton is able to reduce the activation of the calf muscles on the limb wearing the device. However, a decrease in ankle joint range of motion is noted in the limb with the device, and, to a much lesser extent the leg without the exoskeleton.
Twórcy
  • Department of Mechanical Engineering, University of Ottawa 161 Louis-Pasteur, Colonel By Hall Ottawa, ON, K1N 6N5, Canada
autor
  • Department of Mechanical Engineering, University of Ottawa 161 Louis-Pasteur, Colonel By Hall Ottawa, ON, K1N 6N5, Canada
Bibliografia
  • [1] Dodel R, Schrag A. Health-related quality of life in movement disorders. In: Preedy VR, Watson RR, editors. Handbook of disease burdens and quality of life measures. New York: Springer; 2010. p. 4013–34.
  • [2] Lee KM, Wang D. Design analysis of a passive weight- support lower-extremity-exoskeleton with compliant knee-joint. 2015 IEEE International Conference on Robotics and Automation (ICRA) 2015;5572–7.
  • [3] Van Dijk W, Van Der Kooij H. XPED2: a passive exoskeleton with artificial tendons. IEEE Rob Autom Mag 2014;21(4): 56–61.
  • [4] Malcolm P, Derave W, Galle S, De Clercq D. A simple exoskeleton that assists plantarflexion can reduce the metabolic cost of human walking. PLoS One 2013;8(2): e56137.
  • [5] Norris JA, Granata KP, Mitros MR, Byrne EM, Marsh AP. Effect of augmented plantarflexion power on preferred walking speed and economy in young and older adults. Gait Posture 2007;25(4):620–7.
  • [6] Collins SH, Kuo AD. Recycling energy to restore impaired ankle function during human walking. PLoS One 2010;5(2): e9307.
  • [7] Cherelle P, Matthys A, Grosu V, Vanderborght B, Lefeber D. The AMP-foot 2.0: mimicking intact ankle behavior with a powered transtibial prosthesis. 2012 4th IEEE RAS EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob) 2012;544–9.
  • [8] Cherelle P, Grosu V, Matthys A, Vanderborght B, Lefeber D. Design and validation of the ankle mimicking prosthetic (AMP-) foot 2.0. IEEE Trans Neural Syst Rehabil Eng 2014;22 (1):138–48.
  • [9] Malcolm P, Quesada RE, Caputo JM, Collins SH. The influence of push-off timing in a robotic ankle-foot prosthesis on the energetics and mechanics of walking. J Neuroeng Rehabil 2015;12(1).
  • [10] Kinnaird CR, Ferris DP. Medial gastrocnemius myoelectric control of a robotic ankle exoskeleton. IEEE Trans Neural Syst Rehabil Eng 2009;17(1):31–7.
  • [11] Mooney LM, Rouse EJ, Herr HM. Autonomous exoskeleton reduces metabolic cost of human walking. J Neuroeng Rehabil 2014;11:151.
  • [12] Mooney LM, Herr HM. Biomechanical walking mechanisms underlying the metabolic reduction caused by an autonomous exoskeleton. J Neuroeng Rehabil 2016;13:4.
  • [13] Ishikawa M, Komi PV, Grey MJ, Lepola V, Bruggemann G-P. Muscle-tendon interaction and elastic energy usage in human walking. J Appl Physiol 2005;99(2):603–8.
  • [14] Franz JR, Slane LC, Rasske K, Thelen DG. Non-uniform in vivo deformations of the human Achilles tendon during walking. Gait Posture 2015;41(1):192–7.
  • [15] Lichtwark GA, Wilson AM. Interactions between the human gastrocnemius muscle and the Achilles tendon during incline, level and decline locomotion. J Exp Biol 2006;209 (21):4379–88.
  • [16] Zelik KE, Huang T-WP, Adamczyk PG, Kuo AD. The role of series ankle elasticity in bipedal walking. J Theor Biol 2014;346:75–85.
  • [17] Fukunaga T, Kubo K, Kawakami Y, Fukashiro S, Kanehisa H, Maganaris CN. In vivo behaviour of human muscle tendon during walking. Proc R Soc B Biol Sci 2001;268(1464):229–33.
  • [18] Usherwood JR, Channon AJ, Myatt JP, Rankin JW, Hubel TY. The human foot and heel–sole–toe walking strategy: a mechanism enabling an inverted pendular gait with low isometric muscle force? J R Soc Interface 2012;9:2396–402. rsif20120179.
  • [19] Lichtwark GA, Wilson AM. Is Achilles tendon compliance optimised for maximum muscle efficiency during locomotion? J Biomech 2007;40(8):1768–75.
  • [20] Wilson A, Lichtwark G. The anatomical arrangement of muscle and tendon enhances limb versatility and locomotor performance. Philos Trans R Soc Lond B Biol Sci 2011;366(1570):1540–53.
  • [21] Collins SH, Wiggin MB, Sawicki GS. Reducing the energy cost of human walking using an unpowered exoskeleton. Nature 2015;522(7555):212–5.
  • [22] Wiggin MB, Sawicki GS, Collins SH. An exoskeleton using controlled energy storage and release to aid ankle propulsion. 2011 IEEE International Conference on Rehabilitation Robotics (ICORR) 2011;1–5.
  • [23] Hansen AH, Childress DS, Miff SC, Gard SA, Mesplay KP. The human ankle during walking: implications for design of biomimetic ankle prostheses. J Biomech 2004;37 (10):1467–74.
  • [24] Doumit M, Fahim A, Munro M. Analytical modeling and experimental validation of the braided pneumatic muscle. IEEE Trans Rob 2009;25(6):1282–91.
  • [25] Leclair J, Doumit M, McAllister G. Analytical stiffness modeling and experimental validation for a pneumatic artificial muscle;V009T12A089 2014.
  • [26] Winter DA. Appendix A: kinematic, kinetic, and energy data. Biomechanics and motor control of human movement. John Wiley & Sons, Inc.; 2009. p. 296–360.
  • [27] ‘‘Welcome to SENIAM.’’ [Online]. Available: http://www.seniam.org/. [Accessed: 06-Dec-2015].
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1366d6c0-3d12-427f-b503-e74fbf4b30f8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.