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Summary  

In this paper, we present a proposal of a method for the detection and 

localization of flames with the use of infrared images.  In order to achieve this 

goal, an adaptive decomposition of an image has been used to search for 

adjusted elements of the Gabor dictionary. In our work, we used the Matching 

Pursuit algorithm [3]. Using decomposition coefficients of transformed infrared 

images, a coefficient of activity, characterizing the occurring thermal processes, 

has been defined. The method has been developed for the detection of flames 

and can find its application in intelligent surveillance and protection systems. 

Introduction 

Systems for fire detection whose function is most frequently based on 

automatic detectors are critically important for safety. These are usually 

different types of sensors that make use of chemical, ionizing, or thermal 

phenomena, which makes it possible to detect flames or smoke. More advanced 

solutions make use of multi-sensor technologies, enabling one to detect fire 

threats more efficiently. A drawback of these detectors is their inability to 
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pinpoint the place of fire formation, thereby, its (immediate) point 

neutralization.  

In the recent years, we have witnessed a development of research 

concerning the application of video camera images for the detection of flames 

and smoke, thanks to their ability to make an analysis of motion and colour [6, 

10, 19].  Research has been conducted on a method for smoke detection based 

on wavelet transform and vector machines [9], where video from industrial CCD 

cameras were used.  To reduce amount of false alarms in smoke detection, an 

accumulative motion model based on the integral image by fast estimating the 

motion orientation of smoke was devised [20].  

Most fire detection in colour video sequences methods make use of various 

visual characteristics, including colour, motion, and the geometrical contour of 

flame. In [15] the presented method, the temporal accumulation of time 

derivative images to extract the best candidate fire region in video image is 

used.  There were many researches on detecting fire in road and rail tunnels.  

Neural network was used for vehicle fire detection in tunnels [16], but the 

results depended on the distance of the vehicle and the CCD colour camera.  

Good results are provided by an algorithm that uses YcBcR colour space to 

separate the luminance from the chrominance, which works more effectively 

than colour spaces such as RGB [5].  

 

 
 

Fig. 1.  General scheme of our solution 

 
According to our approach, an algorithm of adaptive decomposition has 

been used in order to detect flames by means of infrared images.  In the initial 

stages of transformation, the operations of median filtration and the 
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normalization of transformed the images’ grey levels are performed.  Next, the 

differential image is calculated (Fig. 1) which is the result of subtraction of 

successive images selected from a video sequence.  For such an image, adaptive 

decomposition operations are performed for selected and adjusted elements of 

the Gabor dictionary. Calculated decomposition coefficient residues and atoms 

applied from the dictionary define the search for the coefficient of thermal 

activity.  The calculated coefficient is compared, in the process of classification, 

with the assigned threshold value, in order to make a decision on the existence 

of flames or their absence. 

1.  Median Filtering and Image Grayscale Normalization 

The best-known order-statistics filter is the median filter, which replaces 

the value of a pixel by the median of the grey levels in the neighbourhood of 

that pixel. 

 

               �� ��, �� = �
��
���,��∈����, ��                                     (1) 

 

The original value of the pixel is included in the computation of the median.  

In our case, we use window W = 3 × 3 elements. As a result of median filtration, 

we receive image Im. 

After filtering the image, we normalize all its regions to a certain mean and 

variance.  Normalization is performed to remove the effects of sensor noise and 

grey level deformation. Moreover, the extraction of salient points, performed 

later in our method, depends on the illumination variance in the image.  

Therefore, in order to achieve illumination and contrast invariance, we 

normalize the image. 

Let  Im (x, y) denote the grey value at the pixel (x, y), E and V be the 

estimated mean and illumination variance in the image Im, respectively, and   

In (x, y)  stand for the normalized graylevel value at the pixel (x, y). 

For all the pixels in the image Im, the normalization process is defined as 

follows: 
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(2) 

 

where E0 and V0 are the desired mean and variance values, respectively, and E 

and V are the computed mean and variance in the given image, described by         
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respectively.  In our case, E0 = 100, V0 = 100 and P = 128.  As a result of the 

operation of luminance level normalization, we obtain image In. 

 

 
 

Fig. 2.  Normalized infrared images:  a) image  �����
 in time �, b) image  ����+1�

 in time � + 1,  c) differential 

   image  � = ����+1� − �����
  

 

2.  Flame Detection System based on Adaptive Decomposition of Images 

Decomposition of a differential image I, leading to its adaptive 

representation through a choice of a set of atoms gγ from D dictionary, is 

reduced to the problem of their best match with  the analysed image I, that is, 

the minimization of approximation error  δ [7].  
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Optimal representation can be defined as a subset of the dictionary elements 

whose linear combination accounts for the highest signal energy percentage 

among all equally numerous subsets.  Choosing this representation is difficult in 

terms of computing; thus, in practice, we are satisfied with an iteration adaptive 

solution known as MP [4, 18] algorithm. The result of this algorithm is 

a projection of the signal structural elements on functions chosen from the 

dictionary, called atoms [3]. 

2.1. Matching Pursuit Overview 

In order to perform decomposition of image I, we determine linear 

development for atoms of   set  gγ chosen from dictionary D, so that they will be 

best matched with structural elements of the analysed image I.  

In each step of the MP algorithm, the image I will be further decomposed 

by orthogonal projections on the elements of the dictionary D. Then, in n-th step 

of decomposition, we obtain the following: 
 

 .� � = .�−1� − 〈.�−1�, ,-� −1 〉,-� −1                                    
(6)

 
 

where <*, *>  stands for scalar product and Rn
I  is a residue being the effect of 

decomposition I in the direction gγ.  For a residue of zero order, there occurs an 

obvious dependence Rn
I = I. 

 

The atom gγ is chosen based on the following:  
 

 
,-� = 
", max,- �45 6〈.�−1�, ,-� 〉6 

                                       
 (7)

 
 

where G is a set of dictionary D indexes. 
 

Then, it is possible to calculate decomposition coefficient: 
 +� = 〈.�−1�, ,-� 〉.

                   
(8) 

 

For atom  gγ chosen by means of Dependence (7), residue is minimized in 

the next step n of algorithm MP. Due to the orthogonality of vectors gγ and Rn
I, 

there occurs the following relation: 
 

 ‖.�−1�‖2 = 6〈.�−1�, ,-� −1 〉62 + ‖.� �‖2                                 
(9)

 
                          

Continuing the decomposition process to N-th level, we obtain 
 

.&� = � − '〈.� �, ,-� 〉,-�
&−1
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(10)
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Similar to (9), we can write 

 ‖�‖ = ∑ 6〈.� �, ,-� 〉62 + ‖.� �‖2&−1�=0                              
(11)

 
                                               

Thus, we obtain the equation of energy conservation [3, 14]. 

The number of N iterations, in which decomposition of residues is 

performed, depends on the  accuracy required for the  reconstruction of image I 

and is given by  Dependence (12),  being at the same time a stop criterion of the 

MP algorithm. 

‖.&�‖2 ≤ 9‖�‖2                                              (12)                                                        

 

where parameter β∈ (0, 1). 

 

The rate of the residue norm decrease depends on a correlation between the 

successive residues of images and atoms chosen from the dictionary. If the image 

is a sum of component s with high energy, being atoms of the dictionary, then the 

image correlation coefficients and its residues are significant. Then, their norm 

decreases rapidly, as components with high energy are the image structural 

elements well correlated with the atoms chosen from the dictionary [8]. 

2.2. Dictionary of Gabor Functions 

An exact representation of the analysed image in a dictionary is larger than 

the base introduces redundancy. The desired conciseness can be achieved 

accepting some imperfections of the image reconstruction, but with the use of 

possibly small number of functions [17].  

In the described solution, we propose a waveform from the time frequency 

dictionary which can be expressed as translation (u), dilation (: ) and 

modulation (ϕ) of a window function  g(x) ∈ L2
(R)  

 

,��� = 1
√� 
−<� 2

 
                                              

(13) 

          
 

Then, set = = .+ × .2 is defined, -? ∈ = atom indexes -? = @A? , :? , B? C,  

where parameter u is responsible for scaling, :  is a shift, and ϕ  modelling 

frequency [11, 14]: 
 

,-? ��� = D-?EA? , F�:?A? G cos��: + B? � 
                     

(14) 

 

where :? ≠ 0, phase B? 4�0,2<�, and constant D-?   is matched so that L,-? L = 1.  
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Using properties of two-dimensional decompositions of the Gabor function, 

it can be written as 
 ,-� ��, �� = ,�? ��� × ,-M ���                                 (15) 

 

where  -? = @A? , :? , B? C and  -M = @AM , :M , BMC, "
�N
O��P
M�.  
 
In Table 1 there are presented values of parameters �A, :, B�  used in the 

Gabor dictionary atom ***creation process based on Dependence (15). 
 

Table 1.  Parameters for the Gabor atoms [1] 
 

n u :  ϕ 

1 2 0 0 

2 3 0 0 

3 4 0 0 

4 5 0 0 

5 6 0 0 

6 8 0 0 

7 10 0 0 

8 11 0 0 

9 1 1 π / 2 

10 5 1 π / 2 

11 11 1 π / 2 

12 10 3 0 

13 8 2 0 

14 4 2 0 

15 4 2 π / 4 

16 6 4 π / 4 

 

In Fig. 3, there is an image of the Gabor dictionary modelled by means of 

parameters defined in Table 1. 

 

 
 

Fig. 3.  Gabor dictionary 
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2.3. Flame Feature Extraction Based on Adaptive Decomposition 

The matching pursuit algorithm produces three important elements of 

information:  

• The set of decomposition coefficients + = @+0 , +1 , … , +�−1C ,  
• The set of residues .� = @.0�, .1�, … , .�−1�C, and 

• The list of dictionary elements chosen to approximate of  I(x, y), represented 

as ,- = R,-0 , ,-1 , … , ,-� −1 S .  
This three factors, α, RI and gγ, completely define the image I(x, y).  Their 

energies can be written according to the following equation:  

 � = ‖+‖ + ‖.�‖ + L,- L                                       
(16)

 

The value of E parameter univocally characterizes the context content of 

the analysed differential images I(x, y).  

3. Experimental Results 

A record of inflammable substance combustion was performed in 

a Combustion Laboratory of Polon-Alfa in cooperation with the Institute of 

Optoelectronics at the Military University of Technology in Warsaw [2]. The 

combustion process was performed in appropriately normalized measurement 

conditions.  

The choice of recorded wavelengths was made based on earlier  

measurements of radiation spectrums of inflammable substances with the use of 

an infrared spectroradiometer. An increase in energy emission for the infrared 

radiation waves with length 4–5 µm was observed for different substances. 

 
Table 2.  Experimental results of tested video sequences 
 

Id E Decision 

1 2.46e+6 Yes 

2 1.72e+6 Yes 

3 0.93e+2 No 

4 9.61e+5 Yes 

5 1.12e+6 Yes 

6 8.77e+5 Yes 

7 1.12e+3 No 

8 2.08e+5 Yes 

9 8.71e+5 Yes 

10 1.72e+3 No 
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To record flames, infrared video camera FLIR GF 320, operating in the 

wavelength of 3–5 µm, was used, which recorded all the images with resolution 

320 x 240 pixels.  On the basis of an analysis of literature, [10, 11, 12, 13], and 

the authors’ own observations, the  frequency of recorded images was accepted 

to be 3 Hz. Images of combusted petrol 95 and isopropyl alcohol were analysed.  

Interferences in the form of a quartz and soda lamps were added to the studied 

images.  In the successive stage, a noise in the form of a large fan was added.  

Its blades periodically covered the recorded sources of heat. 

 

 
Fig. 4.  Examples of images from tested video sequences: a) image from Id = 3, b) image from  

Id = 8, c) image from Id = 5 

 

In order to verify the proposed methodology, we used a data set of 50 video 

sequences – 25 with flames, and 25 without flames. Each sequence consists of 

300 images/frames (100 sec.). Sample differential images are presented in Fig 4.  

The sample results are given in Table 2 (values of energy E, threshold, and 

decision (yes for detected flames, no otherwise)). The threshold value for flames 

detection was set to P = 1.0e+4. Detection Rate was 92% (the system correctly 

detected 23 out of 25 flame sequences), while False Positives ratio was 0% (no 

false alarms in 25 sequences without flames).  For the tested images, we noticed 

a trend of increasing energy E for increased thermal dynamics. We also 

performed some experiments in order to localize detected flames by using 

positions of Gabor atoms used in MP algorithm.  However, the obtained results 

were satisfactory only for atoms characterized by high value of luminance mean.   
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4. Conclusions and Future Work 

In the article, a method for the detection of flames with the use of an 

analysis of infrared images has been discussed.   Successive stages of infrared 

variance images transformations involving their normalization, adaptation, and 

adaptive decomposition based on Marching Pursuit robust algorithm that 

searches for and matches elements of a given dictionary to the analysed image 

structure have been presented.  As a result of experiments, it was found that the 

presented method is characterized by a high interference resistance and allows 

the localization of  the source of heat.   
In order to accomplish the goals of this study, methods allowing the system 

to search for the atoms in the context of the analysed images have been studied. 

Further works will aim at increasing the fire detection coefficient with 

simultaneous maintenance of high interference resistance.   
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Wykrywanie płomieni z wykorzystaniem obrazowania w podczerwieni 

Słowa kluczowe 

Wykrywanie płomieni, obrazy termowizyjne, dekompozycja Maching Pursuit. 

Streszczenie 

W pracy zaproponowano metodę wykrywania i lokalizacji płomieni na 

podstawie analizy sekwencji zdjęć wykonanych techniką podczerwieni. Aby 
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osiągnąć ten cel, przetwarzane obrazy poddano operacji poprawy jakości, a na-

stępnie odejmowano je od siebie w celu wyznaczenia obrazów różnicowych. 

Tak otrzymane obrazy poddawano operacji adaptacyjnej dekompozycji z zasto-

sowaniem odpowiednio modelowanych funkcji Gabora w oparciu o algorytm 

Matching Pursuit. Bazując na algorytmie dekompozycji, zdefiniowano współ-

czynnik aktywności termicznej, charakteryzujący wykryte procesy na obrazach 

wykonanych w podczerwieni. Opracowana metoda pozwala na wykrywanie 

i lokalizacje płomieni ze współczynnikiem wykrywalności True Positive rów-

nym 92%. Opisywane rozwiązanie może znaleźć zastosowanie w inteligentnych 

systemach monitoringu i ochrony przeciwpożarowej. 

 




