PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Design analysis of hybrid gas turbine‒fuel cell power plant in stationary and marine applications

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper concerns the design analysis of a hybrid gas turbine power plant with a fuel cell (stack). The aim of this work was to find the most favourable variant of the medium capacity (approximately 10 MW) hybrid system. In the article, computational analysis of two variants of such a system was carried out. The analysis made it possible to calculate the capacity, efficiency of both variants and other parameters like the flue gas temperature. The paper shows that such hybrid cycles can theoretically achieve extremely high efficiency over 60%. The most favourable one was selected for further detailed thermodynamic and flow calculations. As part of this calculation, a multi-stage axial compressor, axial turbine, fuel cell (stack) and regenerative heat exchanger were designed. Then an analysis of the profitability of the installation was carried out, which showed that the current state of development of this technology and its cost make the project unprofitable. For several years, however, tendencies of decreasing prices of fuel cells have been observed, which allows the conclusion that hybrid systems will start to be created. This may apply to both stationary and marine applications. Hybrid solutions related to electrical power transmission, including fuel cells, are real and very promising for smaller car ferries and shorter ferry routes.
Rocznik
Tom
Strony
107--119
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
  • Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233 Gdańsk, Poland
  • Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233 Gdańsk, Poland
Bibliografia
  • 1. Badami M., Chicco G., Portoraro A., Romaniello M. (2018): Micro-multigeneration prospects for residential applications in Italy. Energy Conversion and Management,Vol. 166, 23–36, https://doi.org/10.1016/j.enconman.2018.04.004.
  • 2. Cieśliński J., Kaczmarczyk T., Dawidowicz B. (2017): Performance of the PEM fuel cell module. Part 2. Effect of excess ratio and stack temperature. Journal of Power Technologies, Vol. 97(3), 246-251.
  • 3. Chordia, L. (2019): High temperature heat exchanger design and fabrication for systems with large pressure differentials. Final Scientific/Technical Report 2017. Available online: www.osti.gov/servlets/purl/1349235 (accessed: 26.4.2019).
  • 4. Ferrari M. L., Damo U. M., Turan A., Sanchez D. (2017): Hybrid Systems Based on Solid Oxide Fuel Cells: Modelling and Design, Wiley & Sons Ltd.
  • 5. Seddiek I. S., Elgohary M. M., Ammar N. R. (2015): The hydrogen-fuelled internal combustion engines for marine applications with a case study. Brodogradnja/Shipbilding, Vol. 66(1), 23–38.
  • 6. ISO-2314:2009 Gas turbines – Acceptance tests.
  • 7. Kosowski K., Domachowski Z., Próchnicki W., Kosowski A., Stępień R., Piwowarski M., Włodarski W., Ghaemi M., Tucki K., Gardzilewicz A., Lampart P., Głuch J., Łuniewicz B., Szyrejko C., Obrzut D., Banaszkiewicz M., Topolski J., Kietliński K., Ferdyn Z. (2007): Steam and gas turbines. Power plants, France; Switzerland; UK; Poland: ALSTOM. ISBN 978-83-925959-1-5.
  • 8. Kosowski K., Piwowarski M., Stepien R., Włodarski W. (2018): Design and investigations of the ethanol microturbine. Archives of Thermodynamics, Vol. 39, 41–54. doi:10.1515/ aoter-2018-0011.
  • 9. Kosowski K., Tucki K., Piwowarski M., Stępień R., Orynycz O., Włodarski W., Bączyk A. (2019): Thermodynamic cycle concepts for high-efficiency power plants. Part A: Public power plants 60+. Sustainability, Vol. 11(2), 554–565. doi: 10.3390/su11020554.
  • 10. Kosowski K., Tucki K., Piwowarski M., Stępień R., Orynycz O., Włodarski W. (2019): Thermodynamic cycle concepts for high-efficiency power plants. Part B: Prosumer and distributed power industry. Sustainability, Vol. 11, 26–47. doi:10.3390/su11092647.
  • 11. Kura T., Fornalik-Wajs E., Wajs J., Kenjeres S. (2018): Turbulence models impact on the flow and thermal analyses of jet impingement. MATEC Web of Conferences, 2018, Vol. 240, 01016, doi: 10.1051/matecconf/201824001016.
  • 12. Kura T., Fornalik-Wajs E., Wajs J. (2018): Thermal and hydraulic phenomena in boundary layer of minijets impingement on curved surfaces. Archives of Thermodynamics, Vol. 39(1), 147–166.
  • 13. Lara-Curzio E., Maziasz P. J., Pint B. A., Stewart M., Hamrin D., Lipovich N., DeMore D. (2002); Test facility for screening and evaluating candidate materials for advanced microturbine recuperators, Proc. ASME Turbo Expo 2002, 3-6 June 2002 Amsterdam, GT-2002-30581.
  • 14. Lewinsohn C. A., Wilson M. A., Fellows J. R., Anderson H. S. (2012); Fabrication and joining of ceramic compact heat exchangers for process integration. International Journal of Applied Ceramic Technology, Vol. 9(4), 700–711.
  • 15. Mikielewicz J., Piwowarski M., Kosowski K., Design analysis of turbines for cogenerating micro-power plant working in accordance with organic Rankine’s cycle. Polish Maritime Research (Special issue) (2009) 34-38. doi:10.2478/v10012- 008-0042 4.
  • 16. Mikielewicz J., Wajs J. (2017): Possibilities of heat transfer augmentation in heat exchangers with minichannels for marine applications. Polish Maritime Research, Vol. 24, Special Issue S1, 133–140, doi: 10.1515/pomr-2017-0031.
  • 17. Ministerstwo Energii (2018): Polityka Energetyczna Polski do 2040 roku (PEP 2040), Warszawa (in Polish, version from 13.11.2018).
  • 18. Mitsubishi Heavy Industries Press Information (20.09.2013): MHI Achieves World’s First 4,000-Hour Continuous Operation of Pressurized SOFC-MGT Hybrid Power Generation System, www.mhi.com (accessed: 21.10.2018).
  • 19. National Institute of Standards and Technology, Reference Fluid Thermodynamic and Transport Properties Database (REFPROP), ver. 9.0.
  • 20. O’Hayre R., Suk-Won C., Colella W., Prinz F. B. (2016): Fuel Cell Fundamentals, John Wiley & Sons, Hoboken, New Jersey.
  • 21. Piwowarski M., Kosowski K. (2014): Design analysis of combined gas-vapour micro power plant with 30 kW air turbine. Polish Journal of Environmental Studies, Vol. 23, 1397–1401.
  • 22. Polskie Sieci Elektroenergetyczne (2018): Zestawienie danych ilościowych dotyczących funkcjonowania KSE w 2017 roku, Konstancin-Jeziorna, in Polish.
  • 23. Stępniak D., Piwowarski M. (2014): Analyzing selection of low-temperature medium for cogeneration micro power plant. Polish Journal of Environmental Studies, Vol. 23(4), 1417–1421.
  • 24. Świrski K. (26.11.2018): PEP 2040 – czy rozwiązuje wszystkie problemy? Szersza analiza, www.cire.pl (in Polish, accessed: 12.03.2019).
  • 25. Toyota Motor Corporation (26.04.2017): Toyota Starts Trial of a Hybrid Power Generation System Combining Fuel Cell Technology with Micro Gas Turbines at Motomachi Plant. www.newsroom.toyota.cp.jp, (accessed: 21.10.2018).
  • 26. U.S. Department of Energy (2004): Fuel Cell Handbook, EG&G Technical Services, Margatown, West Virginia.
  • 27. Ustawa z dnia 20 maja 2016 r. o inwestycjach w zakresie elektrowni wiatrowych, Dz.U. 2016 poz. 961, http://prawo. sejm.gov.pl (in Polish, accessed: 7.10.2018).
  • 28. Wajs J., Mikielewicz D., Fornalik-Wajs E. (2016): Thermal performance of a prototype plate heat exchanger with minichannels under boiling conditions. Journal of Physics Conference Series, Vol. 745, 032063.
  • 29. Wajs J., Mikielewicz D., Fornalik-Wajs E., Bajor M. (2019): High performance tubular heat exchanger with minijet heat transfer enhancement. Heat Transfer Engineering, Vol. 40(9– 10), 772–783.
  • 30. Welaya Y. M. A., Morsy El-Gohary M., Ammar N. R. (2011): A Comparison Between Fuel Cells and Other Alternatives For Marine Electric Power Generation. International Journal of Naval Architecture and Ocean Engineering (JNAOE), Korea, SNAK, Vol. 3, 141–149.
  • 31. Welaya Y. M. A., Mosleh M., Ammar N. R. (2013): Thermodynamic analysis of a combined gas turbine power plant with a solid oxide fuel cell for marine applications. Int. J. Naval Archit. Ocean Eng., Vol. 5, 404–413.
  • 32. Welaya Y., Mosleh M., Ammar N. (2013): Thermodynamic analysis of combined gas turbine power plant with a solid oxide fuel cell for marine applications. International Journal of Naval Architecture and Ocean Engineering, Vol. 5(4), 529–545.
  • 33. Włodarski W. (2018): Experimental investigations and simulations of the microturbine unit with permanent magnet generator. Energy, Vol. 158, 59–71. doi:10.1016/j. energy.2018.05.199.
  • 34. Włodarski W. (2019): Control of a vapour microturbine set in cogeneration applications. ISA Transactions, 2019, doi. org/10.1016/j.isatra.2019.04.028.
  • 35. Włodarski W. (2019): A model development and experimental verification for a vapour microturbine with a permanent magnet synchronous generator. Applied Energy, Vol. 252, doi.org/10.1016/j.apenergy.2019.113430.
  • 36. Würsig G. (2017): Zero Emissions, in: Ferry and Ro-ro update, DNV-GL, Maritime Communications, www.dnvgl.com.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1365be48-90b5-493d-8ffe-fa61c049b51b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.