PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of collagen fibres and elastic lamellae content on the mechanical behaviour of abdominal aortic aneurysms

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The main purpose of this study was a detailed analysis of the mechanical and structural characteristics of human abdominal aneurysms in comparison with normal abdominal aortae and determination of the correlations between their mechanical behaviour and the microstructural content. Methods: Various mechanical properties, i.e., mechanical failure properties, elastic moduli, inflection point coordinates, index of anisotropy and incompressibility were determined under uniaxial loading conditions in the circumferential and axial directions. Constitutive parameters were derived from the commonly used constitutive model proposed by Holzapfel et al. [9]. The microstructural arrangement was examined by histological staining supported by scanning electron microscopy analysis. The content of collagen fibres and elastic lamellae was tested in relation to mechanical properties and constitutive parameters. Results: Significant differences were found in the microstructural arrangement and layer composition of the aneurysmal specimens, compared to the normal aorta group. The mechanical properties and constitutive parameters of the aneurysmal specimens were significantly altered, indicating a weakening of the load-bearing properties of the walls of the aneurysms. A comparative analysis discovered significant correlations between structural composition and mechanical parameters, in particular with respect to the number of collagen fibres and failure stress, which can be important for clinical evaluation of abdominal aortic aneurysm (AAA) rupture. Conclusions: Changes in the content of collagen fibres and elastic lamellae correlate with mechanical and constitutive parameters, indicating AAA severity
Rocznik
Strony
9--21
Opis fizyczny
Bibliogr. 31 poz., fot., tab., wykr.
Twórcy
  • Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wrocław University of Science and Technology, ul. Łukasiewicza 7/9, 50-371 Wrocław, Poland
Bibliografia
  • [1] ALEXANDER J., The pathobiology of aortic aneurysms, J. Surg. Res., 2004, 117, 163–175.
  • [2] CAREW T., VAISHNAV R., PATEL D., Compressibility of the arterial wall, Circ. Res., 1968, 23, 61–68.
  • [3] DIMARTINO E., BOHRA A., GEEST J., GUPTA N., MAKAROUN M., VORP D., Biomechanical properties of ruptured versus electively repaired abdominal aortic aneurysm wall tissue, J. Vasc. Surg., 2006, 43, 570–676.
  • [4] EUGSTER T., HUBER A., OBEID T., SCHWEGLER I., GURKE L., STIERLI P., Aminoterminal propeptide of type III procollagen and matrix metalloproteinases-2 and -9 failed to serve as serum markers for abdominal aortic aneurysm, Eur. J. Vasc. Endovasc., 2005, 29, 378–382.
  • [5] FUNG Y.C.B., Elasticity of soft tissue in simple elongation, Am. J. Physiol., 1976, 213, 1532–1534.
  • [6] GĄSIOR-GŁOGOWSKA M., KOMOROWSKA M., HANUZA J., PTAK M., KOBIELARZ M., Structural alteration of collagen fibres – spectroscopic and mechanical studies, Acta Bioeng. Biomech., 2010, 12, 55–62.
  • [7] GEEST J., SACKS M., VORP D., The effects of aneurysm on the biaxial mechanical behavior of human abdominal aorta, J. Biomech., 2006, 39, 1324–1334.
  • [8] HANUZA J., MĄCZKA M., GĄSIOR-GŁOGOWSKA M., KOMOROWSKA M., KOBIELARZ M., BĘDZIŃSKI R., SZOTEK S., MAKSYMOWICZ K., HERMANOWICZ K., FT-Raman spectroscopic study of thoracic aortic wall subjected to uniaxial stress, J. Raman. Spectrosc., 2010, 41, 1163–1169.
  • [9] HOLZAPFEL G., GASSER T., OGDEN R., A new constitutive framework for arterial wall mechanics and a comparative study of material models, J. Elasticity, 2000, 61, 1–48.
  • [10] JOHNSTON K.W., RUTHERFORD R.B., TILSON M.D., SHAH D.M., HOLLIER L., STANLEY J.C., Suggested standards for reporting on arterial aneurysms, J. Vasc. Surg., 1991, 13 (3), 452–458.
  • [11] KAMENSKIY A.V., DZENIS Y.A., KAZMI S.A.J., PEMBERTON M.A., PIPINOS I.I.I., PHILLIPS N.Y., HERBER K., WOODFORD T., BOWEN R.E., LOMNETH C.S., MAC-TAGGART J.N., Biaxial mechanical properties of the human thoracic and abdominal aorta, common carotid, subclavian, renal and common iliac arteries, Biomech. Model Mechanobiol., 2014, 13, 1341–1359.
  • [12] KOBIELARZ M., CHWIŁKOWSKA A., TUREK A., MAKSYMOWICZ K., MARCINIAK M., Influence of selective digestion of elastin and collagen on mechanical properties of human aortas, Acta Bioeng. Biomech., 2015, 17, 55–62.
  • [13] KOBIELARZ M., JANKOWSKI L., Experimental characterization of the mechanical properties of the abdominal aortic aneurysm wall under uniaxial tension, J. Theor. Appl. Mech., 2013, 51(4), 949–958.
  • [14] KOBIELARZ M., KOZUŃ M., GĄSIOR-GŁOGOWSKA M., CHWIŁKOWSKA A., Mechanical and structural properties of different types of human aortic atherosclerotic plaques, J. Mech. Behav. Biomed. Mater, 2020, 109, DOI: 10.1016/ j.jmbbm.2020.103837.
  • [15] KOBIELARZ M., KOZUŃ M., KUZAN A., MAKSYMOWICZ K., WITKIEWICZ W., PEZOWICZ C., The intima with early atherosclerotic lesions is load-bearing component of human thoracic aorta, Biocybern. Biomed. Eng., 2017, 37, 35–43.
  • [16] KOZUŃ M., KOBIELARZ M., CHWIŁKOWSKA A., PEZOWICZ C., The impact of development of atherosclerosis on delamination resistance of the thoracic aortic wall, J. Mech. Behav. Biomed. Mater, 2018, 79, 292–300.
  • [17] KUZAN A., CHWIŁKOWSKA A., PEZOWICZ C., WITKIEWICZ W., GAMIAN A., MAKSYMOWICZ K., KOBIELARZ M., The content of collagen type II in human arteries is correlated with the stage of atherosclerosis and calcification foci, Cardiovasc. Pathol., 2017, 28, 21–27.
  • [18] LEDERLE F.A., KYRIAKIDES T.C., STROUPE K.T., FREISCHLAG J.A., PADBERG F.T., MATSUMURA J.S., HUO Z., JOHNSON G.R., Open versus endovascular repair of abdominal aortic aneurysm, N. Engl. J. Med., 2019, 380, 2126–2135.
  • [19] MAKSYMOWICZ K., KOBIELARZ M., CZOGALA J., Potential indicators of the degree of abdominal aortic aneurysm development in rupture risk estimation, Adv. Clin. Exp. Med., 2011, 20 (2), 221–225.
  • [20] MCGEE G., BAXTER T., SHIVELY V., CHISHOLM R., MCCARTHY W., FLINN W., YAO J., PEARCE W., Aneurysm or occlusive disease - factors determining the clinical course of atherosclerosis of the infrarenal aorta, Surgery, 1991, 110, 370–375.
  • [21] NIESTRAWSKA J.A., REGITNIG P., VIERTLER C., COHNERT T.U., BABU A.R., HOLZAPFEL G.A., The role of tissue remodeling in mechanics and pathogenesis of abdominal aortic aneurysms, Acta Biomater., 2019, 88, 149–161.
  • [22] NIESTRAWSKA J.A., VIERTLER C., REGITNIG P., COHNERT T.U., SOMMER G., HOLZAPFEL G.A., Microstructure and mechanics of healthy and aneurysmatic abdominal aortas: experimental analysis and modeling, J. R. Soc. Interface, 2016, 13, 20160620.
  • [23] PIERCE D., MAIER F., WEISBECKER H., VIERTLER C., VERBRUGGHE P., FAMAEY N., FOURNEAU I., HERIJGERS P., HOLZAPFEL G.A., Human thoracic and abdominal aortic aneurysmal tissues: Damage experiments, statistical analysis and constitutive modeling, J. Mech. Behav. Biomed. Mater, 2015, 41, 92–107.
  • [24] RAGHAVAN M., KRATZBERG J., TOLOSA E., HANAOKA M., WALKER P., DASILVA E., Regional distribution of wall thickness and failure properties of human abdominal aortic aneurysm, J. Biomech., 2006, 39, 3010–3016.
  • [25] SAKALIHASAN N., LIMET R., DEFAWE O., Abdominal aortic aneurysm, Lancet, 2005, 365, 1577–1589.
  • [26] THOMPSON R., BAXTER T., MMP Inhibition in abdominal aortic aneurysms rationale for a prospective randomized clinical trial, Ann. NY. Acad. Sci., 1999, 878, 159–178.
  • [27] THUBRIKAR M., LABROSSE M., ROBICSEK F., AL-SOUDI J., FOWLER B., Mechanical properties of abdominal aortic aneurysm wall, J. Med. Eng. Technol., 2001, 25, 133–142.
  • [28] VORP D., LEE P., WANG D., MAKAROUN M., OGAWA S., WEBSTER M., Association of intraluminal thrombus in abdominal aortic aneurysm with local hypoxia and wall weakening, J. Vasc. Surg., 2001, 34, 291–299.
  • [29] WALSH M.T., CUNNANE E.M., MULVIHILL J.J., AKYILDIZ A.C., GIJSEN F.J.H., HOLZAPFEL G.A., Uniaxial tensile testing approaches for characterisation of atherosclerotic plaques, Journal of Biomechanics, 2014, 47, 793–804.
  • [30] WATTON P., HILL N., HEIL M., A mathematical model for the growth of the abdominal aortic aneurysm, Biomech. Model Mechanobiol., 2004, 3, 98–113.
  • [31] WYSOCKI M., KOBUS K., SZOTEK S., KOBIELARZ M., KUROPKA P., BĘDZIŃSKI R., Biomechanical effect of rapid mucoperiosteal palatal tissue expansion with the use of osmotic expanders, J. Biomech., 2011, 44, 1313–1320.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1363e203-1824-4fd9-ae58-edbb1e9f726c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.