PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Seasonal enhancement of phytoplankton biomass in the southern tropical Indian Ocean: Significance of meteorological and oceanography parameters

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present study focused on understanding the seasonality of the phytoplankton biomass (chlorophyll a) distribution in the oligotrophic, Equatorial, and Southern Tropical Indian Ocean (ESTIO; 0–30°S and 60–90°E). The long-term satellite data analyses (2003–2020) showed a strong seasonality in sea surface temperature (SST), wind, currents, mean sea level anomaly (MSLA), photosynthetically available radiation (PAR), euphotic depth (ZEU) and mixed layer depth (MLD). As a response to the hydrographical changes, the phytoplankton biomass showed noticeable seasonal variation with the highest biomass during the Austral Winter (AW; June–September; avg. 0.11 ± 0.03 mg/m³) and lowest during the Austral Summer (AS; November–February; avg. 0.07 ± 0.03 mg/m). High chlorophyll patches (>0.1 mg/m³) were found between 0°–8°S during the AS and expanded over 0°–18°S during the AW. As multi-year mean chlorophyll a was higher (>0.1 mg/m³) in the northern part of the ESTIO (north of ∼13°S; HCD: high chlorophyll a domain) than the southern side (LCD: low chlorophyll a domain), the study area was divided into two domains and all the variables were analysed. In the HCD, enhancement of chlorophyll a was positively correlated with variables such as wind speed, wind stress, Ekman pumping, stronger northward and westward winds, as well as the presence of cyclonic eddies. These features are likely to stimulate primary production by uplifting the thermocline and enhancing nutrient supply. In the LCD, mixed layer depth also showed a strong positive correlation with elevated chlorophyll a, apparently because it is deep throughout the year (thereby keeping lower biomass) and deepens more strongly in winter than in the HCD. Another contrast with the HCD is that the cyclonic eddies appear to be insufficiently abundant to influence its chlorophyll a. Pearson's multivariable correlation analysis and principle component analysis confirmed the statistical significance of the above parameters on the enhancement of chlorophyll a in the ESTIO.
Czasopismo
Rocznik
Strony
196--219
Opis fizyczny
Bibliogr. 97 poz., map., rys., tab., wykr.
Twórcy
  • CSIR – National Institute of Oceanography, Dona Paula, Goa, India
  • CSIR – National Institute of Oceanography, Dona Paula, Goa, India
Bibliografia
  • 1. Agawin, N.S.R., Duarte, C.M., Agusti, S., 2000. Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production. Limnol. Oceanogr. 45, 591-600.
  • 2. Banse, K., 1959. On upwelling and bottom-trawling off the southwest coast of India. J. Mar. Biol. Assoc. India 1, 33-49.
  • 3. Banse, K., 1968. Hydrography of the Arabian Sea Shelf of India and Pakistan and effects on demersal fishes. Deep Sea Res. 15, 45-79. https://doi.org/10.1016/0011-7471(68)90028-4
  • 4. Banse, K., 1987. Seasonality of phytoplankton chlorophyll in the central and northern Arabian Sea. Deep Sea Res. 34, 713-723. https://doi.org/10.1016/0198-0149(87)90032-X
  • 5. Bhattathiri, P.M.A., Pant, A., Sawant, S.S., Gauns, M., Matondkar, S.G.P., Mahanraju, R., 1996. Phytoplankton production and chlorophyll distribution in the eastern and central Arabian Sea in 1994—1995. Curr. Sci. 71, 857-862.
  • 6. Brewin, R.J.W., Hirata, T., Hardman-Mountford, N.J., Lavender, S.J., Sathyendranath, S., Barlow, R., 2012. The influence of the Indian Ocean Dipole on interannual variations in phytoplankton size structure as revealed by Earth Observation. Deep Sea Res. Pt. II Top. Stud. Oceanogr. 77, 117-127. https://doi.org/10.1016/j.dsr2.2012.04.009
  • 7. Chinnadurai, K., Retnamma, J., Nagarathinam, A., Subramanian, P.R., Singaram, P., Shoba, S., 2021. Microplankton size structure induced by a warm-core eddy in the western Bay of Bengal: Role of Trichodesmium abundance. Oceanologia 63 (3), 283-300. https://doi.org/10.1016/j.oceano.2021.02.003
  • 8. Clemens, S., Prell, W., Murray, D., Shimmield, G., Weedon, G., 1991. Forcing mechanisms of the Indian Ocean monsoon. Nature 353, 720-725. https://doi.org/10.1038/353720a0
  • 9. Currie, J.C., Lengaigne, M., Vialard, J., Kaplan, D.M., Aumont, O., Naqvi, S.W.A., Maury, O., 2013. Indian Ocean Dipole and El Nino/southern oscillation impact on regional chlorophyll anomalies in the Indian Ocean. Biogeosciences 10, 6677-6698. https://doi.org/10.5194/bg-10-6677-2013
  • 10. Desai, B.N., 1965. A brief review of the existing theories of the southwest monsoon and of the proceedings of the symposium on meteorological results of IIOE, 22nd —26th July 1965, Bombay. Curr. Sci. 34, 657-659.
  • 11. Dickman, E.M., Vanni, M.J., Horgan, M.J., 2006. Interactive effects of light and nutrients on phytoplankton stoichiometry. Oecologia 149, 676-689. https://doi.org/10.1007/s00442-006-473-5
  • 12. Dilmahamod, A.F., Hermes, J.C., Reason, C.J.C., 2016. Chlorophylla variability in the Seychelles-Chagos Thermocline Ridge: Analysis of a coupled biophysical model. J. Marine Syst. 154, 220-232. https://doi.org/10.1016/j.jmarsys.2015.10.011
  • 13. Dufois, F., Hardman-Mountford, N.J., Greenwood, J., Richardson, A.J., Feng, M., Herbette, S., Matear, R., 2014. Impact of eddies on surface chlorophyll in the South Indian Ocean. J. Geophys. Res. Oceans 119, 8061-8077. https://doi.org/10.1002/2014JC010164
  • 14. Dufois, F., Hardman-Mountford, N.J., Greenwood, J., Richardson, A.J., Feng, M., Matear, R.J., 2016. Anticyclonic eddies are more productive than cyclonic eddies in subtropical gyres because of winter mixing. Sci. Adv. 2, e1600282. https://doi.org/10.1126/sciadv.1600282
  • 15. Estrada, M., Delgado, M., Blasco, D., Latasa, M., Cabello, A.M., Benitez-Barrios, V., Fraile-Nuez, E., Mozetic, P., Vidal, M., 2016. Phytoplankton across tropical and subtropical regions of the Atlantic, Indian and Pacific oceans. PLoS One 11, e0151699. https://doi.org/10.1371/journal.pone.0151699
  • 16. Fan, S., Moxim, W.J., Levy, H., 2006. Aeolian input of bioavailableiron to the ocean. Geophys. Res. Lett. 33. https://doi.org/10.1029/2005GL024852
  • 17. Feng, M., Majewski, L.J., Fandry, C.B., Waite, A.M., 2007. Characteristics of two counter-rotating eddies in the Leeuwin Current system off the Western Australian coast. Deep Sea Res. Pt II Top.Stud. Oceanogr., The Leeuwin Current and its Eddies 54, 961-980. https://doi.org/10.1016/j.dsr2.2006.11.022
  • 18. Gallienne, C.P., Smythe-Wright, D., 2005. Epipelagic mesozooplankton dynamics around the Mascarene plateau and basin, southwestern Indian Ocean. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 363, 191-202. https://doi.org/10.1098/rsta.2004.1487
  • 19. Gao, Y., Wang, H., 2012. Pan-Asian monsoon and its definition, principal modes of precipitation, and variability features. Sci. China Earth Sci. 55, 787-795. https://doi.org/10.1007/s11430-012-4382-7
  • 20. Gaube, P., Chelton, D.B., Strutton, P.G., Behrenfeld, M.J., 2013.Satellite observations of chlorophyll, phytoplankton biomass,and Ekman pumping in nonlinear mesoscale eddies. J. Geophys. Res. Oceans 118, 6349-6370.
  • 21. Gaube, P., McGillicuddy Jr., D.J., Chelton, D.B., Behrenfeld, M.J., Strutton, P.G., 2014. Regional variations in the influence of mesoscale eddies on near-surface chlorophyll. J. Geophys. Res. Oceans 119, 8195-8220. https://doi.org/10.1002/2014JC010111
  • 22. George, J.V., Nuncio, M., Chacko, R., Anilkumar, N., Noronha, S.B., Patil, S.M., Pavithran, S., Alappattu, D.P., Krishnan, K.P., Achuthankutty, C.T., 2013. Role of physical processes in chlorophyll distribution in the western tropical Indian Ocean. J. Marine Syst. 113, 1-12.
  • 23. George, J.V., Nuncio, M., Anilkumar, N., Chacko, R., Rajashekhar, D., 2018. Seasonal surface chlorophyll a variability in the Seychelles-Chagos Thermocline Ridge. Curr. Sci. 114, 868. https://doi.org/10.18520/cs/v114/i04/868-878
  • 24. Giannini, F., Mendes, C.R.B., Garcia, C.A.E., Carvalho, A.C.O., Ciotti, A.M., 2021. Phytoplankton community and the fluorescence-derived photo-physiological parameters in the South Atlantic Ocean. J. Marine Syst. 218, 103538. https://doi.org/10.1016/j.jmarsys.2021.103538
  • 25. Gopika, S., Izumo, T., Vialard, J., Lengaigne, M., Suresh, I., Kumar, M.R.R., 2020. Aliasing of the Indian Ocean externally forced warming spatial pattern by internal climate variability. Clim. Dynam. 54, 1093-1111. https://doi.org/10.1007/s00382-019-05049-9
  • 26. Gordon, A.L., 1985. Indian-Atlantic transfer of thermocline water at the Agulhas retroflexion. Science 227, 1030-1033. https://doi.org/10.1126/science.227.4690.1030
  • 27. Harms, N.C., Lahajnar, N., Gaye, B., Rixen, T., Dahnke, K., Ankele, M., Schwarz-Schampera, U., Emeis, K.-C., 2019. Nutrient distribution and nitrogen and oxygen isotopic composition of nitrate in water masses of the subtropical southern Indian Ocean. Biogeosciences 16, 2715-2732. https://doi.org/10.5194/bg-16-2715-2019
  • 28. Hermes, J.C., Reason, C.J.C., 2008. Annual cycle of the South Indian Ocean (Seychelles-Chagos) thermocline ridge in a regional ocean model. J. Geophys. Res. Oceans 113. https://doi.org/10.1029/2007JC004363
  • 29. Hermes, J.C., Reason, C.J.C., 2009. The sensitivity of the Seychelles-Chagos thermocline ridge to large-scale wind anomalies. ICES J. Mar. Sci. 66, 1455-1466. https://doi.org/10.1093/icesjms/fsp074
  • 30. Hood, R.R., Wiggert, J.D., Naqvi, S.W.A., 2009. Indian Ocean research: Opportunities and challenges. Geophys. Monogr. Ser. 185, 409-428. https://doi.org/10.1029/2008GM000714
  • 31. Hosoda, S., Ohira, T., Sato, K., Suga, T., 2010. Improved description of global mixed-layer depth using Argo profiling floats. J. Oceanogr. 66, 773-787. https://doi.org/10.1007/s10872-010-0063-3
  • 32. Hu, C., Lee, Z., Franz, B., 2012. Chlorophyll a algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference. J. Geophys. Res. Oceans 117. https://doi.org/10.1029/2011JC007395
  • 33. Hu, C., Feng, L., Lee, Z., Franz, B.A., Bailey, S.W., Werdell, P.J., Proctor, C.W., 2019. Improving Satellite Global Chlorophyll a Data Products Through Algorithm Refinement and Data Recovery. J. Geophys. Res. Oceans 124, 1524-1543. https://doi.org/10.1029/2019JC014941
  • 34. Huang, J., Zhuang, W., Yan, X.-H., Wu, Z., 2020. Impacts of the upper-ocean salinity variations on the decadal sea level change in the southeast Indian Ocean during the Argo era. Acta Oceanol. Sin. 39, 1-10. https://doi.org/10.1007/s13131-020-1574-4
  • 35. Huot, Y., Antoine, D., Daudon, C., 2019. Partitioning the Indian Ocean based on surface fields of physical and biological properties. Deep Sea Res. Pt. II 166, 75-89. https://doi.org/10.1016/j.dsr2.2019.04.002
  • 36. Iskandar, I., Rao2, S.A., Tozuka, T., 2009. Chlorophyll-a bloom along the southern coasts of Java and Sumatra during 2006. Int. J. Remote Sens. 30, 663-671. https://doi.org/10.1080/01431160802372309
  • 37. Jena, B., Swain, D., Avinash, K., 2012. Investigation of the biophysical processes over the oligotrophic waters of South Indian Ocean subtropical gyre, triggered by cyclone Edzani. Int. J. Appl. Earth Obs. Geoinformation 18, 49-56. https://doi.org/10.1016/j.jag.2012.01.006
  • 38. Jena, B., Sahu, S., Avinash, K., Swain, D., 2013. Observation of oligotrophic gyre variability in the south Indian Ocean: Environmental forcing and biological response. Deep Sea Res. 80, 1-10. https://doi.org/10.1016/j.dsr.2013.06.002
  • 39. Jyothibabu, R., Arunpandi, N., Jagadeesan, L., Karnan, C., Lallu, K.R., Vinayachandran, P.N., 2018. Response of phytoplankton to heavy cloud cover and turbidity in the northern Bay of Bengal. Sci. Rep. 8, 1-15. https://doi.org/10.1038/s41598-018-29586-1
  • 40. Jyothibabu, R., Karnan, C., Arunpandi, N., Santhi Krishnan, S., Balachandran, K.K., Sahu, K.C., 2021. Significantly dominant warm-core eddies: An ecological indicato indicator of the basin-scale low biological production in the Bay of Bengal. Ecol. Indic. 121, 107016. https://doi.org/10.1016/j.ecolind.2020.107016
  • 41. Kahru, M., Gille, S.T., Murtugudde, R., Strutton, P.G., Manzano-Sarabia, M., Wang, H., Mitchell, B.G., 2010. Global correlations between winds and ocean chlorophyll. J. Geophys. Res. Oceans 115. https://doi.org/10.1029/2010JC006500
  • 42. Kawamiya, M., Oschlies, A., 2001. Formation of a basin-scale surface chlorophyll pattern by Rossby waves. Geophys. Res. Lett. 28, 4139-4142. https://doi.org/10.1029/2001GL013347
  • 43. Krey, J., Babenerd, B., 1976. Phytoplankton production: atlas of the international Indian Ocean expedition. UNESCO, Intergovernmental Oceanographic Commission, Paris. Large, W.G., Pond, S., 1981. Open Ocean Momentum Flux Measurements in Moderate to Strong Winds. J. Phys. Oceanogr. 11, 324-336. https://doi.org/10.1175/1520-0485(1981)011<0324:OOMFMI>2.0.CO;2
  • 44. Lee, S.K., Park, W., Baringer, M.O., Gordon, A.L., Huber, B., Liu, Y., 2015. Pacific origin of the abrupt increase in Indian Ocean heat content during the warming hiatus. Nat. Geosci. 8, 445-449. https://doi.org/10.1038/ngeo2438
  • 45. Levy, M., Shankar, D., Andre, J.M., Shenoi, S.S.C., Durand, F., de Boyer Montegut, C., 2007. Basin-wide seasonal evolution of the Indian Ocean’s phytoplankton blooms. J. Geophys. Res. Oceans 112.
  • 46. Li, H., Xu, F., Zhou, W., Wang, D., Wright, J.S., Liu, Z., Lin, Y., 2017. Development of a global gridded Argo data set with Barnes successive corrections. J. Geophys. Res. Oceans 122, 866-889. https://doi.org/10.1002/2016JC012285
  • 47. Liao, X., Du, Y., Zhan, H., Shi, P., Wang, J., 2014. Summertime phytoplankton blooms and surface cooling in the western south equatorial Indian Ocean. J. Geophys. Res. Oceans 119, 7687-7704. https://doi.org/10.1002/2014JC010195
  • 48. Liao, X., Du, Y., Zhan, H., Wang, T., Feng, M., 2017. Wintertime phytoplankton blooms in the western equatorial Indian Ocean associated with the Madden-Julian Oscillation. J. Geophys. Res. Oceans 122, 9855-9869. https://doi.org/10.1002/2017JC013203
  • 49. Liao, X., Du, Y., Wang, T., He, Q., Zhan, H., Hu, S., Wu, G., 2020. Extreme phytoplankton blooms in the southern tropical Indian Ocean in 2011. J. Geophys. Res. Oceans 125, e2019JC015649.
  • 50. Ma, J., Du, Y., Zhan, H., Liu, H., Wang, J., 2014. Influence of oceanic Rossby waves on phytoplankton production in the southern tropical Indian Ocean. J. Marine Syst. 134, 12-19. https://doi.org/10.1016/j.jmarsys.2014.02.003
  • 51. Madhupratap, M., Kumar, S.P., Bhattathiri, P.M.A., Kumar, M.D., Raghukumar, S., Nair, K.K.C., Ramaiah, N., 1996. Mechanism of the biological response to winter cooling in the northeastern Arabian Sea. Nature 384, 549-552.
  • 52. Mandal, S., Behera, N., Gangopadhyay, A., Susanto, R.D., Pandey, P.C., 2021. Evidence of a chlorophyll “tongue” in the Malacca Strait from satellite observations. J. Marine Syst. 223, 103610. https://doi.org/10.1016/j.jmarsys.2021.103610
  • 53. Maranon, E., Holligan, P.M., 1999. Photosynthetic parameters of phytoplankton from 50 N to 50 S in the Atlantic Ocean. Mar. Ecol. Prog. Ser. 176, 191-203. https://www.jstor.org/stable/24831883
  • 54. McCreary, J.P., Kundu, P.K., Molinari, R.L., 1993. A numerical investigation of dynamics, thermodynamics and mixed-layer processes in the Indian Ocean. Prog. Oceanogr. 31, 181-244.
  • 55. McCreary Jr, J.P., Murtugudde, R., Vialard, J., Vinayachandran, P.N., Wiggert, J.D., Hood, R.R., Shankar, D., Shetye, S., 2009. Biophysical processes in the Indian Ocean. Indian Ocean Biogeochem. Process. Ecol. Var. 185, 9-32. https://doi.org/10.1029/2008GM000768
  • 56. Michel, D., Sticklor, R., 2012. Indian Ocean rising: maritime security and policy challenges. Stimson, Washington. Moore, T.S., Matear, R.J., Marra, J., Clementson, L., 2007. Phytoplankton variability off the Western Australian Coast: Mesoscale eddies and their role in cross-shelf exchange. Deep Sea Res. Pt. II 54, 943-960. https://doi.org/10.1016/j.dsr2.2007.02.006
  • 57. Morel, A., Huot, Y., Gentili, B., Werdell, P.J., Hooker, S.B., Franz, B.A., 2007. Examining the consistency of products derived from various ocean color sensors in the open ocean (Case 1) waters from the perspective of a multi-sensor approach. Remote Sens. Environ. 111, 69-88. https://doi.org/10.1016/j.rse.2007.03.012
  • 58. Morel, A., Claustre, H., Gentili, B., 2010. The most oligotrophic subtropical zones of the global ocean: similarities and differences in terms of chlorophyll and yellow substance. Biogeosciences 7, 3139-3151. https://doi.org/10.5194/bg-7-3139-2010
  • 59. Morrison, J.M., Codispoti, L.A., Gaurin, S., Jones, B., Manghnani, V., Zheng, Z., 1998. Seasonal variation of hydrographic and nutrient fields during the US JGOFS Arabian Sea Process Study. Deep Sea Res. Part II 45, 2053-2101. https://doi.org/10.1016/S0967-0645(98)00063-0
  • 60. Murtugudde, R., McCreary Jr, J.P., Busalacchi, A.J., 2000. Oceanic processes associated with anomalous events in the Indian Ocean with relevance to 1997-1998. J. Geophys. Res. Oceans 105, 3295-3306. https://doi.org/10.1029/1999JC900294
  • 61. Nagura, M., McPhaden, M.J., 2018. The Shallow Overturning Circulation in the Indian Ocean. J. Phys. Oceanogr. 48, 413-434. https://doi.org/10.1175/JPO-D-17-0127.1
  • 62. Naik, R.K., George, J.V., Soares, M.A., Devi, A., Anilkumar, N.,Roy, R., Bhaskar, P.V., Murukesh, N., Achuthankutty, C.T., 2015. Phytoplankton community structure at the juncture of the Agulhas Return Front and Subtropical Front in the Indian Ocean sector of Southern Ocean: Bottom-up and top-down control. Deep Sea Res. Pt. II 118, 233-239. https://doi.org/10.1016/j.dsr2.2015.01.002
  • 63. Naqvi, S.W.A., Moffett, J.W., Gauns, M.U., Narvekar, P.V., Pratihary, A.K., Naik, H., Shenoy, D.M., Jayakumar, D.A., Goepfert, T.J., Patra, P.K., 2010. The Arabian Sea as a high-nutrient, low-chlorophyll region during the late Southwest Monsoon. Biogeosciences 7, 2091-2100. https://doi.org/10.5194/bg-7-2091-2010
  • 64. New, A.L., Stansfield, K., Smythe-Wright, D., Smeed, D.A., Evans, A.J., Alderson, S.G., 2005. Physical and biochemical aspects of the flow across the Mascarene Plateau in the Indian Ocean. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 363, 151-168. https://doi.org/10.1098/rsta.2004.1484
  • 65. O’Reilly, J.E., Werdell, P.J., 2019. Chlorophyll algorithms for ocean color sensors — OC4, OC5 & OC6. Remote Sens. Environ. 229, 32-47. https://doi.org/10.1016/j.rse.2019.04.021
  • 66. Qasim, S.Z., 1982. Oceanography of the northern Arabian Sea. Deep Sea Res. Part Oceanogr. Res. Pap. 29, 1041-1068.
  • 67. Ragoonaden, S., Babu, V.R., Sastry, J.S., 1987. Physico-chemical characteristics and circulation of waters in the Mauritius-Seychelles Ridge zone, Southwest Indian Ocean. Indian J. Geo-Mar. Sci. 16, 184-191.
  • 68. Rao, S.A., Behera, S.K., Masumoto, Y., Yamagata, T., 2002. Interannual subsurface variability in the tropical Indian Ocean with a special emphasis on the Indian Ocean Dipole. Deep Sea Res. Pt. II Top. Stud. Oceanogr., World Ocean Circulation Experiment 49, 1549-1572. https://doi.org/10.1016/S0967-0645(01)00158-8
  • 69. Resplandy, L., Vialard, J., Levy, M., Aumont, O., Dandonneau, Y., 2009. Seasonal and intraseasonal biogeochemical variability in the thermocline ridge of the southern tropical Indian Ocean. J. Geophys. Res. Oceans 114.
  • 70. Roy, K., Mukhopadhyay, P., Krishna, R.P.M., Ganai, M., Mahakur, M., Rao, T.N., Nair, A.K.M., Ramakrishna, S., 2020. Assessment of climate models in relation to the low-level clouds over the southern Indian Ocean. Q. J. R. Meteorol. Soc. 146, 3306-3325. https://doi.org/10.1002/qj.3847
  • 71. Saji, N.H., Goswami, B.N., Vinayachandran, P.N., Yamagata, T., 1999. A dipole mode in the tropical Indian Ocean. Nature 401, 360-363. https://doi.org/10.1038/43854
  • 72. Sarma, Y.V.B., Krishna, V.V., Rao, D.P., Sastry, J.S., 1990. Thermohaline circulation and water characteristics around Mauritius group of islands. Indian J. Geo-Mar. Sci. 19, 196-200.
  • 73. Schott, F.A., McCreary Jr, J.P., 2001. The monsoon circulation of the Indian Ocean. Prog. Oceanogr. 51, 1-123. https://doi.org/10.1016/S0079-6611(01)00083-0
  • 74. Schott, F.A., Xie, S.P., McCreary Jr, J.P., 2009. Indian Ocean circulation and climate variability. Rev. Geophys. 47, RG1002. https://doi.org/10.1029/2007RG000245
  • 75. Schouten, M.W., de Ruijter, W.P.M., van Leeuwen, P.J., Dijkstra, H.A., 2002. An oceanic teleconnection between the equatorial and southern Indian Ocean. Geophys. Res. Lett. 29, 59-1-5-94. https://doi.org/10.1029/2001GL014542
  • 76. Shankar, D., Vinayachandran, P.N., Unnikrishnan, A.S., 2002. The monsoon currents in the north Indian Ocean. Prog. Oceanogr. 52, 63-120.
  • 77. Shenoi, S.S.C., Shankar, D., Shetye, S.R., 1999. On the sea surface temperature high in the Lakshadweep Sea before the on-set of the southwest monsoon. J. Geophys. Res. Oceans 104, 15703-15712.
  • 78. Shi, W., Wang, M., 2021. A biological Indian Ocean Dipole event in 2019. Sci. Rep. 11, 2452. https://doi.org/10.1038/s41598-021-81410-5
  • 79. Siswanto, E., Horii, T., Iskandar, I., Gaol, J.L., Setiawan, R.Y., Susanto, R.D., 2020. Impacts of climate changes on the phytoplankton biomass of the Indonesian Maritime Continent. J. Marine Syst. 212, 103451. https://doi.org/10.1016/j.jmarsys.2020.103451
  • 80. Smith, S.L., Codispoti, L.A., Morrison, J.M., Barber, R.T., 1998. The 1994-1996 Arabian Sea Expedition: An integrated, interdisciplinary investigation of the response of the northwestern Indian Ocean to monsoonal forcing. Deep-Sea Res. Pt. II 45, 1905-1915. https://doi.org/10.1016/S0967-0645(98)00058-7
  • 81. Song, Q., Gordon, A.L., Visbeck, M., 2004. Spreading of the Indonesian throughflow in the Indian Ocean. J. Phys. Oceanogr. 34, 772-792. https://doi.org/10.1175/1520-0485(2004)034<0772:SOTITI>2.0.CO;2
  • 82. Stramma, L., Lutjeharms, J.R.E., 1997. The flow field of the subtropical gyre of the South Indian Ocean. J. Geophys. Res. Oceans 102, 5513-5530.
  • 83. Strutton, P.G., Coles, V.J., Hood, R.R., Matear, R.J., McPhaden, M.J., Phillips, H.E., 2015. Biogeochemical variability in the central equatorial Indian Ocean during the monsoon transition. Biogeosciences 12, 2367-2382. https://doi.org/10.5194/bg-12-2367-2015
  • 84. Strutton, P.G., Trull, T.W., Phillips, H.E., Duran, E.R., Pump, S., 2023. Biogeochemical Argo Floats Reveal the Evolution of Subsurface Chlorophyll and Particulate Organic Carbon in Southeast Indian Ocean Eddies. J. Geophys. Res. Oceans 128, e2022JC018984. https://doi.org/10.1029/2022JC018984
  • 85. Thompson, P.A., Pesant, S., Waite, A.M., 2007. Contrasting the vertical differences in the phytoplankton biology of a dipole pair of eddies in the south-eastern Indian Ocean. Deep Sea Res. Pt. II 54, 1003-1028.
  • 86. Tomczak, M., Godfrey, J.S., 2003. Regional oceanography: an introduction. Daya Books, Delhi. Trenary, L.L., Han, W., 2008. Causes of decadal subsurface cooling in the tropical Indian Ocean during 1961—2000. Geophys. Res. Lett. 35. https://doi.org/10.1029/2008GL034687
  • 87. Twining, B.S., Rauschenberg, S., Baer, S.E., Lomas, M.W., Martiny, A.C., Antipova, O., 2019. A nutrient limitation mosaic in the eastern tropical Indian Ocean. Deep Sea Res. Pt. II 166, 125-140. https://doi.org/10.1016/j.dsr2.2019.05.001
  • 88. van Ballegooyen, R.C., Grundlingh, M.L., Lutjeharms, J.R.E., 1994. Eddy fluxes of heat and salt from the southwest Indian Ocean into the southeast Atlantic Ocean: A case study. J. Geophys. Res. Oceans 99, 14053-14070. https://doi.org/10.1029/94JC00383
  • 89. Vinayachandran, P.N., Kurian, J., Neema, C.P., 2007. Indian Ocean response to anomalous conditions in 2006. Geophys. Res. Lett. 34. https://doi.org/10.1029/2007GL030194
  • 90. Visser, A.W., Nielsen, T.G., Middelboe, M., Hoyer, J.L., Markager, S., 2015. Oceanography and the base of the pelagic food web in the southern Indian Ocean. J. Plankton Res. 37, 571-583. https://doi.org/10.1093/plankt/fbv019
  • 91. Waite, A.M., Pesant, S., Griffin, D.A., Thompson, P.A., Holl, C.M., 2007. Oceanography, primary production and dissolved inorganic nitrogen uptake in two Leeuwin Current eddies. Deep Sea Res. Pt. II Top. Stud. Oceanogr., The Leeuwin Current and its Eddies 54, 981-1002. https://doi.org/10.1016/j.dsr2.2007.03.001
  • 92. Wiggert, J.D., Hood, R.R., Banse, K., Kindle, J.C., 2005. Monsoondriven biogeochemical processes in the Arabian Sea. Prog. Oceanogr. 65, 176-213. https://doi.org/10.1016/j.pocean.2005.03.008
  • 93. Wiggert, J.D., Murtugudde, R.G., Christian, J.R., 2006. Annual ecosystem variability in the tropical Indian Ocean: Results of a coupled bio-physical ocean general circulation model. Deep Sea Res. Pt. II 53, 644-676. https://doi.org/10.1016/j.dsr2.2006.01.027
  • 94. Wiggert, J., Vialard, J., Behrenfeld, M., 2009. Basin-Wide Modification of Dynamical and Biogeochemical Processes by the Positive Phase of the Indian Ocean Dipole During the SeaWiFS Era. Am. Geophys. Union Geophys. Monogr. Ser., Washington DC 185, 385-407. https://doi.org/10.1029/2008GM000776
  • 95. Wishner, K.F., Gowing, M.M., Gelfman, C., 1998. Mesozooplankton biomass in the upper 1000 m in the Arabian Sea: overall seasonal and geographic patterns, and relationship to oxygen gradients. Deep Sea Res. Pt. II 45, 2405-2432. https://doi.org/10.1016/S0967-0645(98)00078-2
  • 96. Woodberry, K.E., Luther, M.E., O’Brien, J.J., 1989. The wind-driven seasonal circulation in the southern tropical Indian Ocean. J. Geophys. Res. Oceans 94, 17985-18002. https://doi.org/10.1029/JC094iC12p17985
  • 97. Wyrtki, K., 1973. An equatorial jet in the Indian Ocean. Science 181, 262-264. https://doi.org/10.1126/science.181.4096.262
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-135e765e-eed5-41c2-8ebd-dc7225a464f5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.