PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A mechanical model of heart valves with chordae for in silico real-time computations and cardiac surgery planning

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, a two-dimensional (2D) model of the dynamics of mitral valve with chordae is developed based on in vivo data of the periodical motion of the valve leaflets digitized from the ultrasound imaging. The chordae are considered as viscoelastic springs described by the five-element rheological model. The model allows fast numerical computations of forces in the chordae and leaflets at different locations of the chordae of a different order. It can be used in real-time computations of the patient-specific geometry for optimal surgery planning when the mitral valve insufficiency is associated with broken chordae, and neochordae implantation is needed.
Rocznik
Strony
391--412
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wykr.
Twórcy
autor
  • Vilnius Gediminas Technical University Institute of Mechanical Sciences J. Basanavičiaus st., 28, 03-109 Vilnius, Lithuania
  • Vilnius Gediminas Technical University Institute of Mechanical Sciences J. Basanavičiaus st., 28, 03-109 Vilnius, Lithuania rimantas.kacianauskas@vgtu.lt
autor
  • Warsaw University of Technology Institute of Aeronautics and Applied Mechanics Nowowiejska 24, 00-665 Warsaw, Poland
autor
  • Kharkov National Polytechnic University “KPI” Kyrpichova st., 21, 61-000 Kharkov, Ukraine
Bibliografia
  • 1. Gefen A. [Ed.], Patient-Specific Modeling in Tomorrow’s Medicine, Springer 2012.
  • 2. Kerckhoffs R.C.P. [Ed.], Patient-Specific Modeling of the Cardiovascular System. Technology-driven personalized medicine, Springer, 2010.
  • 3. Taylor C.A., Figueroa C.A., Patient-specific modeling of cardiovascular mechanics, Annual Reviews on Biomedical Engineering, 11: 109–134, 2009.
  • 4. Zhang W., Ayoub S., Liao J., Sacks M.S., A meso-scale layer-specific structural constitutive model of the mitral heart valve leaflets, Acta Biomaterialia, 32: 238–255, 2016.
  • 5. Feigenbaum H., Armstrong W.F., Ryan Th., Feigenbaum’s Echocardiography, 6th ed., Philadelphia, Lippincott Williams & Wilkins, 2004.
  • 6. Khalighi A.H., Drach A., ter Huurne F.M. et al., A comprehensive framework for the characterization of the complete mitral valve geometry for the development of a population-averaged model, Lecture Notes in Computer Sciences, 9126: 164–171, 2015.
  • 7. Degandt A.A., Weber P.A., Saber H.A., Duran C.M.G., Mitral valve basal chordae: comparative anatomy and terminology, Annals of Thoracic Surgery, 84: 1250–1255, 2007.
  • 8. Song J.-M., Kim J.-J., Ha T.-Y. et al., Basal chordae sites on the mitral valve determine the severity of secondary mitral regurgitation, Heart, 101: 1024–1031, 2015.
  • 9. Votta E., Caiani E., Veronesi F. et al., Mitral valve finite-element modelling from ultrasound data: a pilot study for a new approach to understand mitral function and clinical scenarios, Philosophical Transactions of the Royal Society, Ser. A, 366: 3411–3434, 2008.
  • 10. Votta E., Le T.B., Stevanella M. et al., Toward patient-specific simulations of cardiac valves: State-of-the-art and future directions, Journal of Biomechanics, 46: 217–228, 2013.
  • 11. Hammer P.E., Sacks M.S., del Nido P.J., Howe R.D., Mass-spring vs. finite element models of anisotropic heart valves: speed and accuracy, Proceedings of the ASME Summer Bioengineering Conference, Naples, Florida, USA, 2010.
  • 12. Krishnamurthy G., Ennis D.B., Itoh A. et al., Material properties of the ovine mitral valve anterior leaflet in vivo from inverse finite element analysis, American Journal of Physiology, 295: H1141–H1149, 2008.
  • 13. Gaidulis G., Kačianauskas R., Kizilova N., Romashov Y., A mechanical model of heart valves with chords for in silico real time computations and cardio surgery planning, 40th Solid Mechanics Conference, Warsaw, p. 157, 2016.
  • 14. Romashov Y., Kizilova N., Gaidulis G., Mathematical modeling of mitral valve dynamics: nonlinear vs linear models, Proceedings of the 5th International Conference on Nonlinear Dynamics, Kharkov, Ukraine, pp. 208–215, 2016.
  • 15. Rodriguez F., Langer F., Harrington K.B. et al., Importance of mitral valve secondorder chordae for left ventricular geometry, wall thickening mechanics, and global systolic function, Circulation, 110: 115–122, 2004.
  • 16. Bajona P., Zehr K.J., Liao J., Speziali G., Tension measurement of artificial chordae tendinae implanted between the anterior mitral valve leaflet and the left ventricular apex; an in vitro study, Innovations, 3: 33–37, 2008.
  • 17. Kochová P., Klepáček J., Hlubocky J. et al., Heart valve viscoelastic properties – a pilot study, Applied and Computational Mechanics, 1: 97–104, 2007.
  • 18. Otto C.M., Bonow R.O. [Eds.], Valvular heart disease: A companion to Braunwald’s heart disease, Saunders/Elsevier, Philadelphia, 2009.
  • 19. Liao J., Vesely I., A structural basis for the size-related mechanical properties of mitral valve chordae tendineae, Journal of Biomechanics, 36: 1125–1133, 2003.
  • 20. Barber J.E., Ratliff N.B., Cosgrove D.M. 3rd, Griffin B.P., Vesely I., Myxomatous mitral valve chordae. I: Mechanical properties, The Journal of Heart Valve Diseases, 10: 320–324, 2001.
  • 21. Leet K.M., Uang C.-M., Gilbert A.M., Fundamentals of structural analysis (2nd ed.), McGraw-Hill, Boston, 2005.
  • 22. Weggel D.C., Boyajian D.M., Chen Sh.-En., Modelling structures as systems of springs, World Transactions on Engineering and Technology Education, 6: 169–172, 2007.
  • 23. Olsson K.-G., Dahlblom O., Structural mechanics: modelling and analysis of frames and trusses, Wiley, 2016.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-135e2d10-7d47-4452-8f02-7a769746eb1c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.