PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Borell and Landau–Shepp Inequalities for Cauchy-Type Measures

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We investigate various inequalities for the one-dimensional Cauchy measure. We also consider analogous properties for onedimensional sections of multidimensional isotropic Cauchy measures. The paper is a continuation of our previous investigations [2], where we found, among intervals with fixed measure, the ones with the extremal measure of the boundary. Here for the above mentioned measures we investigate inequalities that are analogous to those proved for Gaussian measures by Borell [1] and by Landau and Shepp [5]. We also consider a 1-symmetrization for Cauchy measures, analogous to the one defined for Gaussian measures by Ehrhard [3], and we prove the concavity of this operation.
Rocznik
Strony
129--152
Opis fizyczny
Bibliogr. 9 poz.
Twórcy
  • Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-656 Warszawa, Poland
  • Faculty of Pure and Applied Mathematics, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
autor
  • Faculty of Pure and Applied Mathematics, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
  • [1] C. Borell, The Brunn-Minkowski inequality in Gauss space, Invent. Math. 30 (1975), 207-216.
  • [2] T. Byczkowski and T. Żak, Extremal properties of one-dimensional Cauchy-type measures, Probab. Math. Statist. 35 (2015), 247-266.
  • [3] A. Ehrhard, Symétrisation dans l’espace de Gauss, Math. Scand. 53 (1983), 281-301.
  • [4] S. Kwapień and J. Sawa, On some conjecture concerning Gaussian measures of dilatations of convex symmetric sets, Studia Math. 105 (1993), 173-187.
  • [5] H. J. Landau and L. A. Shepp, On the supremum of a Gaussian process, Sankhyā 32 (1970), 369-378.
  • [6] R. Latała and K. Oleszkiewicz, Gaussian measures of dilations of convex symmetric sets, Ann. Probab. 27 (1999), 1922-1938.
  • [7] E. Milman and L. Rotem, Complemented Brunn-Minkowski inequalities and isoperimetry for homogeneous and non-homogeneous measures, Adv. Math. 262 (2014), 867-908.
  • [8] A. Prekopa, On logarithmic concave measures and functions, Acta Sci. Math. (Szeged) 34 (1973), 335-343.
  • [9] V. N. Sudakov and B. S. Tsirel’son, Extremal properties of half-spaces for spherically invariant measures, Zap. Nauchn. Sem. LOMI 41 (1974), 14-24 (in Russian).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-135b60d1-02d6-4177-9e66-5358d89e73c3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.