PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Prediction of vortex structures in pulsatile flow through S-bend arterial geometry with different stenosis levels

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Arterial stenosis poses a high cardiovascular risk, and clinical intervention is needed when these stenoses grow beyond a specific limit. The study of vortex dynamics in these diseased arteries can be beneficial to understand its severity. Therefore, in the present work, we have investigated the flow structures in an S-bend arterial geometry with different levels of stenosis using a sharp interface immersed boundary method. We have observed an onset of Kelvin-Helmholtz-type vortex roll-up for higher degrees of stenoses. Fluctuations in the wall shear stress are observed for higher stenosis degrees. However, these fluctuations depend on the position and length of the stenosis. Newtonian and non-Newtonian Carreau fluids predict similar vortex structures, although minor differences in the Kelvin-Helmholtz vortex structures and associated fluctuations are observed in the diastolic phase. The Newtonian fluid predicts a slightly longer low time-averaged wall shear stress (≤0.5 Pa) region immediately after the stenosis compared with the Carreau fluid in the 58 % blockage S-bend artery.
Twórcy
  • Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, West Bengal, India
autor
  • Department of Aerospace Engineering, Indian Institute of Technology Kharagpur, West Bengal, India
  • Department of Mechanical Engineering, Indian Institute of Technology Patna, Bihta, Bihar, India
  • Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, West Bengal, India
autor
  • Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
  • Centre for Computational and Data Sciences, Indian Institute of Technology Kharagpur, West Bengal, India
Bibliografia
  • [1] Cox C, Najjari MR, Plesniak MW. Three-dimensional vortical structures and wall shear stress in a curved artery model. Phys Fluids 2019:31. https://doi.org/10.1063/1.5124876.
  • [2] Chen Y, Yang X, Iskander AJ, Wang P. On the flow characteristics in different carotid arteries. Phys Fluids 2020:32. https://doi.org/10.1063/5.0022092.
  • [3] Pinto SIS, Campos JBLM, Azevedo E, Castro CF, Sousa LC. Numerical study on the hemodynamics of patient-specific carotid bifurcation using a new mesh approach. Int J Numer Method. Biomed Eng 2018:34. https://doi.org/10.1002/cnm.2972.
  • [4] Gharahi H, Zambrano BA, Zhu DC, DeMarco JK, Baek S. Computational fluid dynamic simulation of human carotid artery bifurcation based on anatomy and volumetric blood flow rate measured with magnetic resonance imaging. Int J Adv Eng Sci Appl Math 2016:8. https://doi.org/10.1007/s12572-016-0161-6.
  • [5] Mendieta JB, Fontanarosa D, Wang J, Paritala PK, McGahan T, Lloyd T, et al. The importance of blood rheology in patient-specific computational fluid dynamics simulation of stenotic carotid arteries. Biomech Model Mechanobiol 2020:19. https://doi.org/10.1007/s10237-019-01282-7.
  • [6] Womersley JR. Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J Physiol 1955:127. https://doi.org/10.1113/ jphysiol.1955.sp005276.
  • [7] Geoghegan PH, Buchmann NA, Soria J, Jermy MC. Time-resolved PIV measurements of the flow field in a stenosed, compliant arterial model. Exp Fluids 2013:54. https://doi.org/ 10.1007/S00348-013-1528-0.
  • [8] Griffith MD, Leweke T, Thompson MC, Hourigan K. Pulsatile flow in stenotic geometries: flow behaviour and stability. J Fluid Mech 2009;622:291-320. https://doi.org/10.1017/ S0022112008005338.
  • [9] Freidoonimehr N, Arjomandi M, Sedaghatizadeh N, Chin R, Zander A. Transitional turbulent flow in a stenosed coronary artery with a physiological pulsatile flow. Int J Numer Method. Biomed Eng 2020:36. https://doi.org/10.1002/cnm.3347.
  • [10] Tomaszewski M, Sybilski K, PB-B and, 2020 undefined. Experimental and numerical flow analysis through arteries with stent using particle image velocimetry and computational fluid dynamics method. Elsevier n.d. 2020;40 (2):740-751.
  • [11] Hong H, Yeom E, Ji HS, Kim HD, Kim KC. Characteristics of pulsatile flows in curved stenosed channels. PLoS One 2017:12. https://doi.org/10.1371/journal.pone.0186300.
  • [12] Buradi A, Engineering AM-B and B, 2020 undefined. Impact of coronary tortuosity on the artery hemodynamics. Elsevier n. d. 2020;40(1):126-147.
  • [13] Song J, Kouidri S, Bakir F. Numerical study on flow topology and hemodynamics in tortuous coronary artery with symmetrical and asymmetrical stenosis. Biocybern Biomed Eng 2021:41. https://doi.org/10.1016/j.bbe.2020.12.006.
  • [14] Mazzitelli R, Boyle F, Murphy E, AR-B and, 2016 undefined. Numerical prediction of the effect of aortic Left Ventricular Assist Device outflow-graft anastomosis location. Elsevier n. d. 2016;36(2):327-343.
  • [15] Jodko D, Obidowski D, PR-B and, 2017 undefined. Blood flows in end-to-end arteriovenous fistulas: Unsteady and steady state numerical investigations of three patient-specific cases. Elsevier n.d. 2017;37(3):528-539.
  • [16] Tyfa Z, Obidowski D, Reorowicz P, LS-B and, 2018 undefined. Numerical simulations of the pulsatile blood flow in the different types of arterial fenestrations: Comparable analysis of multiple vascular geometries. Elsevier n.d. 2018;38(2):228-242.
  • [17] Reorowicz P, Tyfa Z, Obidowski D, Wiśniewski K, Stefańczyk L, Jóźwik K, et al. Blood flow through the fusiform aneurysm treated with the Flow Diverter stent – Numerical investigations. Biocybern Biomed Eng 2022:42. https://doi. org/10.1016/j.bbe.2022.02.008.
  • [18] Bonati LH, Ederle J, Dobson J, Engelter S, Featherstone RL, Gaines PA, et al. Length of carotid stenosis predicts peri-procedural stroke or death and restenosis in patients randomized to endovascular treatment or endarterectomy. Int J Stroke 2014:9. https://doi.org/10.1111/ijs.12084.
  • [19] Zhang X, Luo M, Wang E, Zheng L, Shu C. Numerical simulation of magnetic nano drug targeting to atherosclerosis: Effect of plaque morphology (stenosis degree and shoulder length). Comput Methods Programs Biomed 2020:195. https://doi.org/10.1016/j.cmpb.2020.105556.
  • [20] Barati E, Halabian M, Karimi A, Navidbakhsh M. Numerical evaluation of stenosis location effects on hemodynamics and shear stress through curved artery. J Biomater Tissue Eng 2014:4. https://doi.org/10.1166/jbt.2014.1176.
  • [21] Shahzad H, Wang X, Ghaffari A, Iqbal K, Reports M-H-S. Fluid structure interaction study of non-Newtonian Casson fluid in a bifurcated channel having stenosis with elastic walls. NatureCom 2022.
  • [22] Kalbasi R, Sharifzadeh B, and MJ-AB, 2022 undefined. Investigation of Artery Wall Elasticity Effect on the Prediction of Atherosclerosis by Hemodynamic Factors. HindawiCom n. d. 2022:3446166. https://doi.org/10.1155/2022/3446166.
  • [23] Razavi A, Shirani E, Sadeghi MR. Numerical simulation of blood pulsatile flow in a stenosed carotid artery using different rheological models. J Biomech 2011:44. https://doi. org/10.1016/j.jbiomech.2011.04.023.
  • [24] Kabir MA, Alam MF, Uddin MA. Numerical simulation of pulsatile blood flow: a study with normal artery, and arteries with single and multiple stenosis. J Eng Appl Sci 2021:68. https://doi.org/10.1186/S44147-021-00025-9.
  • [25] Dhange M, Sankad G, Safdar R, Id WJ, Eidid MR, Bhujakkanavarid U, et al. A mathematical model of blood flow in a stenosed artery with post-stenotic dilatation and a forced field 2022. https://doi.org/10.1371/journal.pone.0266727.
  • [26] Padma R, Ponalagusamy R, Tamil SR. Mathematical modeling of electro hydrodynamic non-Newtonian fluid flow through tapered arterial stenosis with periodic body acceleration and applied magnetic field. Appl Math Comput 2019;362. https:// doi.org/10.1016/J.AMC.2019.05.024 124453.
  • [27] Johnston BM, Johnston PR, Corney S, Kilpatrick D. NonNewtonian blood flow in human right coronary arteries: steady state simulations. J Biomech 2004:37. https://doi.org/ 10.1016/j.jbiomech.2003.09.016.
  • [28] Jahangiri M, Saghafian M. Science MS-J of M, Numerical simulation of non-Newtonian models effect on hemodynamic factors of pulsatile blood flow in elastic stenosed artery. Springer 2017;31:1003-13. https://doi.org/ 10.1007/s12206-017-0153-x.
  • [29] Albadawi M, Abuouf Y, Elsagheer S, Ookawara S, Ahmed M. Predicting the onset of consequent stenotic regions in carotid arteries using computational fluid dynamics. Phys Fluids 2021:33. https://doi.org/10.1063/5.0068998.
  • [30] DiCarlo AL, Holdsworth DW, Poepping TL. Study of the effect of stenosis severity and non-Newtonian viscosity on multidirectional wall shear stress and flow disturbances in the carotid artery using particle image velocimetry. Med Eng Phys 2019:65. https://doi.org/10.1016/j.medengphy.2018.12.023.
  • [31] Kamangar S, Ameer Ahamad N, Nik-Ghazali N, Anqi AE, Algahtani A, Ahamed Saleel C, et al. The influence of multistenosis in the left coronary artery subjected to the variable blood flow rate. Front Eng Built Environ 2021;1:97-106. https://doi.org/10.1108/FEBE-02-2021-0008/FULL/HTML.
  • [32] Andayesh M, Shahidian A, Biomedical MG-B and, 2020 undefined. Numerical investigation of renal artery hemodynamics based on the physiological response to renal artery stenosis. Elsevier n.d. 2020;40(4):1458-1468.
  • [33] Mu Z, Sun Y, Li X, Qiu X, Gao B, Liu Y, et al. Multiphysics coupling study on the effect of blood flow pulsation in patients with pulsatile tinnitus. Elsevier n.d. 2021;41(3):1197-1207.
  • [34] Mirfendereski S, Park JS. Direct numerical simulation of a pulsatile flow in a stenotic channel using immersed boundary method. Eng Rep 2022;4. https://doi.org/10.1002/eng2.12444.
  • [35] Wang L, Dong D, Tian B. Fast prediction of blood flow in stenosed arteries using machine learning and immersed boundary-lattice Boltzmann method 2022. https://doi.org/10. 3389/fphys.2022.953702.
  • [36] Balogh P, reports PB-P, Three-dimensional distribution of wall shear stress and its gradient in red cell-resolved computational modeling of blood flow in in vivo-like microvascular networks. Wiley Online Library 2019;7. https://doi.org/10.14814/phy2.14067.
  • [37] Uttam S, Khan PM, Alam MI, Roy S. Behavior of wall shear stress near carotid artery bifurcation at elevated pulse rates. J Flow Visualization Image Process 2020;27. https://doi.org/ 10.1615/JFlowVisImageProc.2020031021.
  • [38] Cox C, Plesniak MW. The effect of entrance flow development on vortex formation and wall shear stress in a curved artery model. Phys Fluids 2021;33. https://doi.org/10.1063/5.0062565.
  • [39] Lone T, Alday A, Zakerzadeh R. Numerical analysis of stenoses severity and aortic wall mechanics in patients with supravalvular aortic stenosis. Comput Biol Med 2021;135. https://doi.org/10.1016/j.compbiomed.2021.104573.
  • [40] Amir M, Usmani AY, Varshney M, Anwer SF, Khan SA, Islam N, et al. Analysing Spatio-temporal flow hemodynamics in an artery manifesting stenosis. Int J Mech Sci 2022;218. https:// doi.org/10.1016/j.ijmecsci.2022.107072.
  • [41] Sethi SS, Lau JF, Godbold J, Gustavson S, Olin JW. The S curve: A novel morphological finding in the internal carotid artery in patients with fibromuscular dysplasia. Vascular Medicine (United Kingdom) 2014;19. https://doi.org/10.1177/ 1358863X14547122.
  • [42] Yu J, Qu L, Xu B, Wang S, Li C, Xu X, et al. Current understanding of dolichoarteriopathies of the internal carotid artery: a review. Int J Med Sci 2017;14. https://doi.org/ 10.7150/ijms.19229.
  • [43] Singh R, Tubbs RS. Effect of cervical siphon of external and internal carotid arteries. J Craniofacial Surg 2017;28. https:// doi.org/10.1097/SCS.0000000000003658.
  • [44] Xie X, Wang Y, Zhu H, Zhou J. Computation of hemodynamics in tortuous left coronary artery: a morphological parametric study. J Biomech Eng 2014;136. https://doi.org/10.1115/1.4028052.
  • [45] Niazmand H, Rajabi JE. Bend sweep angle and reynolds number effects on hemodynamics of S-shaped arteries. Ann Biomed Eng 2010;38. https://doi.org/10.1007/s10439-010-0043-1.
  • [46] Troyer A, Saloner D, Pan XM, Velez P, Rapp JH. Major carotid plaque surface irregularities correlate with neurologic symptoms. J Vasc Surg 2002;35. https://doi.org/10.1067/ mva.2002.121210.
  • [47] Hokari M, Kuroda S, Yasuda H, Nakayama N, Abe S, Iwasaki Y, et al. Lumen morphology in mild-to-moderate internal carotid artery stenosis correlates with neurological symptoms. J Neuroimaging 2011;21. https://doi.org/10.1111/j.1552-6569.2010.00552.x.
  • [48] Freidoonimehr N, Chin R, Zander A, Arjomandi M. Effect of shape of the stenosis on the hemodynamics of a stenosed coronary artery. Phys Fluids 2021;33. https://doi.org/10.1063/ 5.0058765.
  • [49] Taylor AMKP, Whitelaw JH, Yianneskis M, Whitelaw JH, Yianneskis M. Developing flow in S-shaped ducts. 2: Circular cross-section duct 1984.
  • [50] Krejza J, Arkuszewski M, Kasner SE, Weigele J, Ustymowicz A, Hurst RW, et al. Carotid artery diameter in men and women and the relation to body and neck size. Stroke 2006;37. https://doi.org/10.1161/01.STR.0000206440.48756.f7.
  • [51] Christiansen MK, Jensen JM, Nørgaard BL, Dey D, Bøtker HE, Jensen HK. Coronary plaque burden and adverse plaque characteristics are increased in healthy relatives of patients with early onset coronary artery disease. JACC Cardiovasc Imaging 2017;10. https://doi.org/10.1016/j.jcmg.2016.10.014.
  • [52] Carreau PJ. RHEOLOGICAL EQUATIONS FROM MOLECULAR NETWORK THEORIES. Trans Soc Rheol 1972;16. https://doi. Org/10.1122/1.549276.
  • [53] Lopes D, Puga H, Teixeira JC, Teixeira SF. Fluid-Structure interaction study of carotid blood flow: comparison between viscosity models. Eur J Mech, B/Fluids 2020:83. https://doi. org/10.1016/j.euromechflu.2020.05.010.
  • [54] Long Q, Xu XY, Ramnarine KV, Hoskins P. Numerical investigation of physiologically realistic pulsatile flow through arterial stenosis. J Biomech 2001:34. https://doi.org/ 10.1016/S0021-9290(01)00100-2.
  • [55] Vosse FN, Dongen MEH. Cardiovascular Fluid Mechanics (Lecture Notes). Theoret Appl Mech 1998;1992.
  • [56] San O, Staples AE. An improved model for reduced-order physiological fluid flows. J Mech Med Biol 2012;12. https://doi. org/10.1142/S0219519411004666.
  • [57] Orlanski I. A simple boundary condition for unbounded hyperbolic flows. J Comput Phys 1976;21. https://doi.org/ 10.1016/0021-9991(76)90023-1.
  • [58] Harlow FH, Welch JE. Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys Fluids 1965;8. https://doi.org/10.1063/1.1761178.
  • [59] Kumar M, Roy S. A sharp interface immersed boundary method for moving geometries with mass conservation and smooth pressure variation. Comput Fluids 2016;137. https:// doi.org/10.1016/j.compfluid.2016.07.008.
  • [60] Alam MI, Raj A, Khan PM, Kumar S, Roy S. Numerical simulation of flow of a shear-thinning Carreau fluid over a transversely oscillating cylinder. J Fluid Mech 2021;921. https://doi.org/10.1017/jfm.2021.485.
  • [61] Apurva Raj, Piru Mohan Khan, Md. Irshad Alam, Akshay Prakash, Somnath Roy, A GPU-accelerated sharp interface immersed boundary method for versatile geometries, Journal of Computational Physics, 2023, 111985, ISSN 0021-9991, https://doi.org/10.1016/j.jcp.2023.111985.
  • [62] Raj A, Roy S, Vydyanathar N, Sharma B. Acceleration of a 3D immersed boundary solver using OpenACC. Proceedings - 25th IEEE International Conference on High Performance Computing Workshops, HiPCW 2018, 2019. https://doi.org/10. 1109/HiPCW.2018.8634138.
  • [63] OpenACC Programming and Best Practices Guide 2022.
  • [64] Kumar M, Roy S, Ali MS. An efficient immersed boundary algorithm for simulation of flows in curved and moving geometries. Comput Fluids 2016:129. https://doi.org/10.1016/ j.compfluid.2016.02.009.
  • [65] JEong J, Hussain F. On the identification of a vortex. J Fluid Mech 1995;285. https://doi.org/10.1017/S0022112095000462.
  • [66] Dean WR. The stream-line motion of fluid in a curved pipe (Second paper). The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 1928;5. https://doi.org/10.1080/14786440408564513.
  • [67] Chatzizisis YS, Coskun AU, Jonas M, Edelman ER, Feldman CL, Stone PH. Role of Endothelial Shear Stress in the Natural History of Coronary Atherosclerosis and Vascular Remodeling. Molecular, Cellular, and Vascular Behavior. J Am Coll Cardiol 2007;49. https://doi.org/10.1016/j.jacc.2007.02.059.
  • [68] Cunningham KS, Gotlieb AI. The role of shear stress in the pathogenesis of atherosclerosis. Lab Invest 2005;85. https:// doi.org/10.1038/labinvest.3700215.
  • [69] Glor FP, Ariff B, Hughes AD, Crowe LA, Verdonck PR, Barratt DC, et al. Image-based carotid flow reconstruction: A comparison between MRI and ultrasound. Physiol Meas 2004;25. https://doi.org/10.1088/0967-3334/25/6/014.
  • [70] Pinto SIS, Campos JBLM. Numerical study of wall shear stress-based descriptors in the human left coronary artery. Comput Methods Biomech Biomed Engin 2016;19. https://doi. Org/10.1080/10255842.2016.1149575.
  • [71] Ding G, Choi KS, Ma B, Kato T, Yuan W. Transitional pulsatile flows with stenosis in a two-dimensional channel. Phys Fluids 2021;33. https://doi.org/10.1063/5.0042753.
  • [72] Elhfnawy AM, Heuschmann PU, Pham M, Volkmann J, Fluri F. Stenosis length and degree interact with the risk of cerebrovascular events related to internal carotid artery stenosis. Front Neurol 2019;10. https://doi.org/10.3389/ fneur.2019.00317.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-135abb48-e1b1-4a97-a4f1-0a8dfc6268d2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.