PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impact of Accelerated Aging on the Performance Characteristics of “Green” Packaging Material of Polylactide

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the result of the research on the impact of the accelerated aging process on selected operational properties of polylactide films containing natural antioxidants in the form of coffee, cocoa or cinnamon extracts. The research was focused on mechanical properties important for the packaging industry from the point of view of the reliability of the obtained products, i.e. tensile strength, relative deformation at maximum stress, relative deformation at break, Young’s modulus, impact strength and storage module at various temperatures. The extracts have a positive effect on the determined mechanical properties. The obtained results were very often better not only than the values obtained for pure polymer, but also better than the values obtained for the film containing the synthetic anti-aging compound. It can therefore be concluded that the proposed plant extracts will have a positive effect on the stability of the mechanical properties of the manufactured products, which will allow long-term, reliable and safe operation of packaging. Proposed extracts can therefore be an alternative to the previously used synthetic anti-aging additives.
Twórcy
  • Institute of Materials Engineering, Kazimierz Wielki University, ul. Chodkiewicza 30, 85-064 Bydgoszcz, Poland
  • Institute of Materials Engineering, Kazimierz Wielki University, ul. Chodkiewicza 30, 85-064 Bydgoszcz, Poland
  • Institute of Materials Engineering, Kazimierz Wielki University, ul. Chodkiewicza 30, 85-064 Bydgoszcz, Poland
  • Institute of Materials Engineering, Kazimierz Wielki University, ul. Chodkiewicza 30, 85-064 Bydgoszcz, Poland
Bibliografia
  • 1. ASTM D 4065 06, 2006, Standard Practice for Plastics: Dynamic Mechanical Properties: Determination and Report of Procedures.
  • 2. Atli A, Candelier K, Alteyrac J. Mechanical, thermal and biodegradable properties of bioplastspruce green wood polymer composites. International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering 2018; 12(5): 226–238.
  • 3. Baishya P, Saikia D, Mandal M. & Maji, T.K. Biodegradability, flammability, dimensional stability, and UV resistance study of green wood starch gluten nanocomposites. Polymer Composites 2019; 40: 46–55.
  • 4. Barczewski M., Andrzejewski J., Matykiewicz D., Krygier A., Kloziński A Influence of accelerated weathering on mechanical and thermomechanical properties of poly(lactic acid) composites with natural waste filler. Polimery 2014; 64(2): 119–126.
  • 5. Brzozowska A., Rabiej S., Fabia J., Nowak J. Changes in thermal properties of isotactic polypropylene with different additives during aging process. Polimery 2014; 59: 302–307.
  • 6. Brzozowska-Stanuch A, Rabiej S, Sarna E, Maślanka M. Wpływ promieniowania UV na właściwości poliamidu PA6 – metody starzenia materiałów polimerowych. Polimery i kompozyty konstrukcyjne. Cieszyn: Logos Press, 2010; 48–57.
  • 7. Byun Y, Kim Y.T, Whiteside S. Characterization of an antioxidant polylactic acid (PLA) film prepared with α-tocopherol, BHT and polyethylene glycol using film cast extruder. Journal of Food Engineering 2010; 100(2): 239–244.
  • 8. Carrasco F, Pages P, Pascual S, Colom X. Artificial aging of high-density polyethylene by ultraviolet irradiation. European Polymer Journal 2001; 37(7): 1457–1464.
  • 9. Drogoń A., Skotnicki M., Pyda M. Physical aging of polylactide-valsartan system investigated by differential scanning calorimetry. Polimery 2020; 65(7–8): 533–541.
  • 10. Gates T.S, Grayson M.A. On the use of accelerated aging methods for screening high temperature polymeric composite materials. American Institute of Aeronautics and Astronautics 1999; 925–935.
  • 11. Głogowska K., Majewski Ł., Garbacz T., TorŚwiątek A. The effect of ageing on selected properties of polylactide modified with blowing agents. Advances in Science and Technology Research Journal 2019; 13(4): 204–213.
  • 12. Gołębiewski J, Gibas E, Malinowski R. Wybrane polimery biodegradowalne – otrzymywanie, właściwości, zastosowanie. Polimery 2008; 53(11–12): 799–807.
  • 13. Hutchinson J.M, Physical aging of polymers. Progress in Polymer Science 1995; 20: 703–760.
  • 14. Islam M.N, Dungani R, Khalil H.A, Alwani M.S, Nadirah W.W. & Fizree H.M. Natural weathering studies of oil palm trunk lumber (OPTL) green polymer composites enhanced with oil palm shell (OPS) nanoparticles. SpringerPlus 2013; 2(1): 592.
  • 15. ISO 8256:2004, Plastics – Determination of tensile-impact strength.
  • 16.Jachowicz T., Garbacz T., Tor-Świątek A., Gajdoš I., Czulak A. Investigation of selected properties of injection-molded parts subjected to natural aging. International Journal of Polymer Analysis and Characterization 2015; 20(4): 307–315.
  • 17.Jadhav A.C, Pandit P, Gayatri T.N, Chavan P.P, Jadhav N.C. Production of Green Composites from Various Sustainable Raw Materials. Green Composites. Textile Science and Clothing Technology. Springer Nature Singapore 2019.
  • 18. La Mantia F.P, Morreale M. Green composites: A brief review. Composites Part A: Applied Science and Manufacturing 2011; 42(6): 579–588.
  • 19. Lenartowicz M., Swinarew B., Swinarew A., Rymarz G. The evaluation of long-term aged PVC, International Journal of Polymer Analysis and Characterization. 2014; 19(7): 611–624
  • 20. Lim L.T, Auras R, Rubino M. Processing technologies for poly(lactic acid). Progress in Polymer Science 2008; 33(8): 820–852.
  • 21. Moraczewski K., Stepczyńska M., Malinowski R., Karasiewicz T., Jagodziński B., Rytlewski P. The Effect of Accelerated Aging on Polylactide Containing Plant Extracts. Polymers 2019, 11(4): 575.
  • 22. Ortiz-Vazquez H, Shin J, Soto-Valdez H, Auras R. Release of butylated hydroxytoluene (BHT) from Poly(lactic acid) films. Polymer Testing 2011; 30(5): 463–471.
  • 23. PN-EN ISO 527–3:1998, Plastics – Determination of tensile properties – Part 1: General principles.
  • 24. PN-EN ISO 527–3:1998, Plastics – Determination of tensile properties – Part 3: Test conditions for films and sheets.
  • 25. Richert A. Biodegradowalne polimery pochodzenia naturalnego z surowców odnawialnych. Polimery biodegradowalne. Zagadnienia wybrane. Toruń: Instytut Inżynierii Materiałów Polimerowych i Barwników, 2013; 21–48.
  • 26. Tavares A.C, Gulmine J.V, Lepienski C.M, Akcelrud L. The effect of accelerated aging on the surface mechanical properties of polyethylene. Polymer Degradation and Stability 2003; 81(2): 367–373.
  • 27. Thakur V.K, Singha A.S. & Mehta I.K. Renewable Resource-Based Green Polymer Composites: Analysis and Characterization. International Journal of Polymer Analysis and Characterization 2010; 15(3): 137–146.
  • 28. Thakur V.K, Singha A.S. & Thakur M.K. Green Composites from Natural Fibers: Mechanical and Chemical Aging Properties. International Journal of Polymer Analysis and Characterization 2012; 17(6): 401–407.
  • 29. Thakur V.K, Thakur M. K, Raghavan P, Kessler M.R. Progress in Green Polymer Composites from Lignin for Multifunctional Applications: A Review. ACS Sustainable Chemistry & Engineering 2014; 2(5): 1072–1092.
  • 30. Tiganis B.E, Burn L.S, Davis P, Hill A.J. Thermal degradation of acrylonitrile butadiene–styrene (ABS) blends. Polymer Degradation and Stability 2002; 76(3): 425–434.
  • 31. Xia Y, Rubino M. Effect of cut edge area on the migration of BHT from polypropylene film into a food simulant. Polymer Testing 2016; 51: 190–194.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-135aba43-40ed-48ce-87cd-85ada6a8ba8f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.