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Abstract 

In this paper, the design sensitivity of the frequency response function and amplitudes of the steady-state 
vibration of planar frames with viscoelastic (VE) dampers mounted on them is considered. The dampers are 
modeled using a five-parameter rheological model with fractional derivatives. The design sentisivity with 
respect to change of damper parameter is analyzed in detail. The direct method is used to determine the first 
and the second order sensitivities. Moreover, the results of typical calculations are presented and discussed. 
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1. Introduction 

The design sensitivity analysis of structures and mechanical systems is a very important 
issue, which is helpful in solving many engineering problems, such as: optimization of 
structures, parametric identification problems, structural health monitoring problems, 
model updating problems [1], structural reliability problems, damage detection [2] and 
others. In the recent years, studies on the analysis of sensitivity for systems with viscoe-
lastic dampers have been started e.g., the eigensensitivity analysis of viscoelastic (VE) 
structures is presented in [3].  

The frequency response function is one of the most important tools of evaluation of 
the dynamic response of structure. Its design sensitivity analysis has been studied by 
several authors. For example, the direct differentiation method is presented in paper [4] 
and both the direct differentiation method and the adjoint variable method is described in 
[5,6].  

In this paper, the direct differentiation method for the design sensitivity analysis of 
structure with viscoelastic dampers modeled by fraction derivatives is presented. This 
work is an extension of the previous paper [7], which dealt with the sensitivity analysis 
of eigenvalues and eigenvectors of structure with fractional dampers. 

Firstly, in this paper, the model of damper and the equation of motion of a structure 
with dampers described by fractional derivatives are presented. Then the method of 
calculation of the frequency response functions (FRF) and amplitudes of steady-state 
vibration is presented. Next, the design sensitivity analysis is shown. Finally, the two-
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storey planar frame is considered. In the example, the sensitivity of FRF with respect to 
change of parameter of damper is calculated and the correctness of the presented method 
is proved. At the end, the conclusions are presented. 

2. Description of structures with VE dampers 

Many rheological models of dampers have been proposed in the literature. The most 
popular among them are the two classic ones: the Maxwell and the Kelvin models. In 
order to better describe the damper, so-called fractional models are often used. They 
describe the rheological properties of dampers more efficiently than the classic ones [8]. 
A so-called the springpot element, shown as a small diamond in Figure 1, is described by 
the two constants c and α, where α denotes the order of the fractional derivative. 

In this paper, the fractional model of a damper is used (see Figure 1). The damper is 
described by five parameters: stiffnesses k0 and k1, springpot factors c0 and c1, and 
the fractional parameter α (0 < α < 1). As special cases, it contains a number of specific 
models, e.g., the three-parameter Maxwell and Kelvin models, the four-parameter frac-
tional Maxwell model. 

 
 
 
 
 
 

Figure 1. A model of the damper 

The force in the considered model of damper is written as: 

 )()()( 10 tututu +=  (1) 

where u0(t) is the force in the fractional Kelvin element and u1(t) is the force in the frac-
tional Maxwell element.  

Evaluation equations for the Kelvin model can be written as follows: 

 )()()( 000 tqDctqktu t ∆+∆= α  (2) 

where: ( ) jki qqtq −=∆ , qk and qj  denote the nodal displacements of the considered 

model of damper. Dt
α  denotes the Riemann-Liouville fractional derivative of the order α 

with respect to time t [9,10]. For the Kelvin model, the evaluation equations could be 
described in the following way: 

 ( ) ( ) ( )tqDctuD
k

c
tu tt ∆=+ αα
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1

1
1  (3) 

After taking the Laplace transform, Equation (1) can be written in the form: 

 )()()( 10 sususu += , (4) 

and Equations (2) and (3) take the following form: 
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 )()()( 000 sqscsqksu ∆∆∆∆∆∆∆∆ α+=  (5) 

 )()()( 1111 sqscsussu ∆∆∆∆αατ =+  (6) 

where the quantities with the bar denote the Laplace transform, i.e.: [ ])()( tqLsq ∆=∆ , 

[ ])()( 00 tuLsu = ., [ ])()( 11 tuLsu = , [ ])()( tuDLsus t
αα = , and s  is the Laplace variable.  

Finally: 

 )()()( sqsGsu ∆=  (7) 

where: 
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The classic Kelvin and Maxwell models are obtained by introducing 1=α . 
The equation of motion of structures with VE dampers can be written in the follow-

ing form: 

 )()()()()( ttttt sss fpqKqCqM +=++ &&&  (9) 

where: Ms, Cs and Ks, denote the mass, the damping and the stiffness matrix of structure, 
respectively. The structure is modeled as a shear frame with mass lumped at the storey 
level. Moreover, q(t) = [q1 ... qn]

T is the vector of displacements of the structure, 
p(t) = [p1 ... pn]

T  is the vector of excitation forces and f(t) = [f1 ... fn]
T  is the vector of the 

interaction forces between the frame and the dampers (see Figure 2). 
Vector f(t)  is a sum of the vectors fi(t) . Each of them is formed if only the damper i 

is located on the frame, i.e.: 

 ∑
=

=
m

i
i tt

1

)()( ff . (10) 

 

 

 

 

Figure 2. Diagram of frame with VE dampers 

For the damper located between the floors j and j + 1 (see Fig. 2), the following may 
be written: 

 ( )tut iii ef =)( ,     [ ]Tjji ee 0...11...0 1 −=+== +e . (11) 

After taking the Laplace transform, the equation of motion could be written as: 

 )()()( )( 2 sssss sss fpqKCM +=++  (12)  
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where: [ ])()( tLs qq = , [ ])()( tLs pp = , [ ])()( tLs ff = .  

For m dampers, the following equation is obtained: 

 )()(
1

sus i

m

i
i∑

=

= ef  (13) 

Substituting Equation (7) written for damper i to Equation (13) leads to: 

 )( )()(
1

ssGs i

m

i
i qLf ∑

=

−= , (14) 

where: T
iii eeL = . After substituting Equation (14) into (12) the equation of motion of 

structure with VE dampers could be written as: 

 )()()( sss pqD =  (15) 

where: 

 ∑
=

+++=
m

i
isss ssss
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2  )()( GKCMD ,       ii sGs LG )( )( i= . (16) 

3. Frequency response function (FRF) 

The dynamic response of structure can be described by using the frequency response 
functions. In this context, we assume that  

 )exp()( tit λPp =  (17) 

where T
nPP ], ... ,[ 1=P  (compare Figure 2), λ is the excitation frequency. The steady-state 

solution to the motion equation could be assumed in the two equivalent forms: 

 )exp()exp()()( titit λλλ aPHq ==  (18) 

where )(λH  is the matrix of frequency response functions and a is the vector of ampli-

tudes of steady-state vibration. After substituting Formulae (17) and (18) into (9) we 
obtain: 

 IHD =)()( λλ  (19) 

hence  

 1)()( −= λλ DH . (20) 

We can also obtain the formula describing the matrix )(λD  by substituting relation-

ship λis =  into Equation (16). Hence: 
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Based on Relationship (18) we can also write: 

 PHa )(λ=  (22) 

4. Design sensitivity 

In order to determine the relationship describing the sensitivity of FRF, it is necessary to 
use the following obvious equation: 

 IHH =−1)()( λλ  (23) 

Differentiating Equation (23) with respect to the design parameter p leads to: 
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Differentiating the Equation (23) the second time, we obtain the second order sensitivity: 
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where: 
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In the calculation of sensitivity, the first and the second order with respect to the cho-
sen parameter of structure or damper, only the matrices pp ∂∂ ),(λD  and 

22 ),( pp ∂∂ λD  change and can be reduced to a much simpler form.  

After calculating the sensitivity of FRF, it is possible to determine the sensitivity of 
amplitudes of steady-state vibration in a simple way. Differentiating Equation (22) with 
respect to the design parameter leads to: 

 P
Ha

p

p
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∂

=
∂
∂ ),(λ  (26) 

where sensitivity of FRF  is described by Equation (24). 

5. Example  

In order to illustrate the presented method, a two-storey building with a three-parameter 
Maxwell damper situated on the second storey is considered (see Fig. 3). The following 
data are adopted: the mass of every floor m = 1000kg, the storey stiffness ks = 
100000N/m and the damper parameters: k1 = 50000N/m, c1 = 8000Nsα/m and α = 0.6. 
The damping properties of the structure are neglected. 
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In this example, the frequency response matrix H(λ)is determined for the excitation 
frequency taken from the range λ ∈ (0, 20rad/sec). The calculation results are presented 
in Figure 4, where the real and the imaginary parts of the function H11(λ) are shown.  

The sensitivity of H11(λ) with respect to the change of the stiffness parameter k1 of 
the damper is calculated and the frequency taken from the range λ ∈ (0, 20rad/sec). 
The results are presented in Figure 5. 
 

 
 
 
 
 
 
 
 

Figure 3. a) Diagram of the considered frame, b) Maxwell model of damper 
 

 
Figure 4. The real and the imaginary parts of the function )(11 λH : (a) real, 

b) imaginary) 
 
 

 
Figure 5. The real and the imaginary parts of sensitivity of )(11 λH : (a) real, 

b) imaginary) 

In order to verify the correctness of the calculation, the values of FRF after change of 
the parameter are determined according to the formula: 
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where ∆p denotes a change of the design parameter. The obtained values were compared 
with the exact solution, when the design parameter changed its own value by 1%. 
The calculation is carried out for the selected frequencies and the obtained results are 
presented in Table 1. The results proved the presented method to be correct. 

Table 1. A comparison of ( )111 ,kH λ  

Frequency 
λ  [rad/sec] 1

1

111
111

),(
),( k

k

kH
kH ∆∆∆∆

∂
∂

+
λ

λ  Exact value of ),( 1111 kkH ∆∆∆∆+λ  

4.0 0.153048∙10-4-0.624154∙10-7i 0.153048∙10-4-0.624135∙10-7i 

6.0 0.824470∙10-4-0.158672∙10-4i 0.824476∙10-4-0.158668∙10-4i 

6.5 -0.983082∙10-4-0.418210∙10-4i -0.983076∙10-4-0.418190∙10-4i 

7.0 -0.291213∙10-4-0.522328∙10-5i -0.291211∙10-4-0.522308∙10-5i 

7.5 -0.153077∙10-4-0.235479∙10-5i -0.153076∙10-4-0.235470∙10-5i 

Moreover, a comparison was made by using first-order sensitivity values according 
to Equation (27) and second-order sensitivity values according to the following equation: 
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The calculations are carried out for a change of parameter k1, taken from the range  
1% – 50% and presented in Figure 6. Now, we can conclude that the second order sensi-
tivity gives results which are very close to an exact solution if the change of parameter k1 
is smaller than 20% . 
 

 

Figure 6. The comparison of ),( 1111 kkH ∆∆∆∆+λ  

6. Conclusions  

In this paper the design sensitivity analysis of FRF and amplitudes of the steady-state 
vibration of structures with VE dampers is presented. The formulae are calculated by 

1k∆∆∆∆  

H11 Sensitivity  
the second order 

Exact solution 

Sensitivity  
the first order 



136 

using the direct method. The obtained eqations enable determination of the sensitivity of 
the dynamic characteristics of structures with VE dampers with respect to a chosen de-
sign parameter. The considered five-parameter damper model can be used for an analysis 
of structures with different dampers, described by selected classic and fractional rheolog-
ical models. In the example, the correctness of the present method is proved. 

The method used to calculate the sensitivities of FRF and amplitudes of the steady-
state vibration of structures with VE dampers is easy to formulate, systematic to apply, 
simple to code, and it agrees well with the exact results. Such an analysis has been car-
ried out for the first time. 
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