PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental research on the thermal properties of innovative insulation boards made of polyurethane-polyisocyanurate (PUR/PIR)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, the results of investigations of polyurethane materials were presented. Innovative materials based on polyurethane-polyisocyanurate (PUR/PIR) foam were obtained. Different types of additives (flame retardants, aerogels – additives that decrease thermal conductivity) are used in the composition of PUR/PIR foam. Foams are a type of composite composed of two phases: continuous (polyurethane polymers) and dispersed (composed of gases). All samples have been tested for thermal parameters: thermal conductivity, specific heat, and thermal diffusivity. Then they have been compared with each other and with a reference sample (RS) without additives. Based on the research, it was shown that innovative insulation materials were characterized by thermal conductivity λ in the range of 0.0254–0.0294 W/(m · K). The thermal properties of foams depending on the type and chemical composition of the material. Depending on the used substrates, their molar ratio, type, synthesis conditions, modifying agents and catalysts, a different polyurethane material is obtained.
Rocznik
Strony
40--46
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wz.
Twórcy
  • Faculty of Civil Engineering, Mechanics and Petrochemistry, Warsaw University of Technology, Łukasiewicza 17, 09-400 Płock, Poland
  • Faculty of Civil Engineering, Mechanics and Petrochemistry, Warsaw University of Technology, Łukasiewicza 17, 09-400 Płock, Poland
  • Łukasiewicz Research Network – Professor Ignacy Mościcki Industrial Chemistry Institute, 8 Rydygiera Street, 01-793 Warszawa, Poland
  • Łukasiewicz Research Network – Professor Ignacy Mościcki Industrial Chemistry Institute, 8 Rydygiera Street, 01-793 Warszawa, Poland
  • Faculty of Civil Engineering, Mechanics and Petrochemistry, Warsaw University of Technology, Łukasiewicza 17, 09-400 Płock, Poland
Bibliografia
  • 1. The European Green Deal, Brussels, 11.12.2019 COM (2019) 640 final, https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52019DC0640.
  • 2. Gupta, A., Badr, Y., Negahban, A. & Qiu, R.G. (2021). Energy-efficient heating control for smart buildings with deep reinforcement learning. J. Buil. Engin. 34, 101739. DOI: 10.1016/j.jobe.2020.101739.
  • 3. Naldzhiev, D., Mumovic, D. & Strlic, M. (2020). Polyurethane insulation and household products – A systematic review of their impact on indoor environmental quality. Buil. Environ. 169, 106559. DOI: 10.1016/j.buildenv.2019.106559.
  • 4. Khaleel, M., Soykan, U. & Çetin, S. (2021). Influences of turkey feather fiber loading on significant characteristics of rigid polyurethane foam: Thermal degradation, heat insulation, acoustic performance, air permeability and cellular structure. Construc. Buil. Mater. 308, 125014. DOI: 10.1016/j.conbuildmat.2021.125014.
  • 5. Wirpsza, Z. (1991). Poliuretany: Chemia, Technologia, Zastosowanie, Wydawnictwa Naukowo Techniczne, Poland.
  • 6. Heiran, R., Ghaderian, A., Reghunadhan, A., Sedaghati, F. & Thomas, S. (2021). Glycolysis: An efficient route for recycling of end of life polyurethane foams. J. Polymer Res., 28(1), 1–19.
  • 7. Gao, T., Jelle, B. P., Gustavsen, A. & Jacobsen, S. (2014). Aerogel-incorporated concrete: An experimental study. Constr. Buil. Mater. 52, 130–136. DOI: 10.1016/j.conbuildmat.2013.10.100.
  • 8. Schmidt, M. & Schwertfeger, F. (1998). Applications for silica-based aerogel products on an industrial scale. Materials Research Society Online Proceedings Library 521, 179–184.
  • 9 . Leung, C. K. K., Lu, L., Liu, Y., Cheng, H. S. S. & Tse, J. H. (2020). Optical and thermal performance analysis of aerogel glazing technology in a commercial building of Hong Kong. Energy Buil. Environ. 1 (2), 215–223. DOI: 10.1016/j.enbenv.2020.02.001.
  • 10. Nocentini, K., Achard, P., Biwole, P. & Stipetic, M. (2018). Hygro-thermal properties of silica aerogel blankets dried using microwave heating for building thermal insulation. Energy Buil. 158, 14–22. DOI: 10.1016/j.enbuild.2017.10.024.
  • 11. Wernery, J., BenIshai, A., Binder, B. & Brunner, S. (2017). Aerobrick – An aerogel-filled insulating brick. Energy Procedia 134, 490–498. DOI: 10.1016/j.egypro.2017.09.607.
  • 12. Berardi, U. (2017). The benefits of using aerogel-enhanced systems in building retrofits. Energy Procedia 134, 626–635.
  • 13. Karamikamkar, S., Naguib, H. E. & Park, C. B. (2020). Advances in precursor system for silica-based aerogel production toward improved mechanical properties, customized morphology, and multifunctionality: A review. Adv. Colloid Interf. Sci. 276, 102101. DOI: 10.1016/j.cis.2020.102101.
  • 14. Gurav, J. L., Jung, I. K., Park, H. H., Kang, E. S. & Nadargi, D. Y. (2010). Silica Aerogel: Synthesis and Applications. J. Nanomater., 409310. DOI:10.1155/2010/409310.
  • 15. Pan, Y., He, S., Gong, L., Cheng, X., Li, C., Li, Z., Liu, Z. & Zhang, H. (2017). Low thermal-conductivity and high thermal stable silica aerogel based on MTMS/Water-glass co-precursor prepared by freeze drying. Mater. and Design 113, 246–253.
  • 16. Xu, D., Yu, K. & Qian, K. (2018). Thermal degradation study of rigid polyurethane foams containing tris (1-chloro-2-propyl) phosphate and modified aramid fiber. Polymer Testing, 67, 159–168.
  • 17. Jankowski, P. & Kędzierski, M. (2011). Synthesis of polystyrene of reduced flammability by suspension polymerization in the presence of halogen-free additives. Polimery, 56(1), 20–26.
  • 18. Jankowski, P. & Kijowska, D. (2016). The influence of parameters of manufacturing hybrid flame retardant additives containing graphite on their effectiveness. Polimery, 61(5), 327–333.
  • 19. Jankowski, P. & Kędzierski, M. (2013). Polystyrene with reduced flammability containing halogen-free flame retardants. Polimery, 58(5), 342–349.
  • 20. Wang, S. X., Zhao, H. B., Rao, W. H., Huang,, S. C., Wang, T., Lioa, W. & Wang, Y. Z. (2018). Inherently flame-retardant rigid polyurethane foams with excellent thermal insulation and mechanical properties. Polymer 153, 616–625, DOI: 10.1016/j. polymer.2018.08.068.
  • 21. Prałat, K., Jaskulski, R., Ciemnicka, J., Makomaski, G. (2021). Analysis of the thermal properties and structure of gypsum modified with cellulose based polymer and aerogels. Arch. Civil Engin., 66(4). DOI: 10.24425/ace.2020.135214.
  • 22. Prałat, K., Grabowski, M., Kubissa, W., Jaskulski, R. & Ciemnicka, J. (2019). Application of experimental setup for the thermal conductivity measurement of building materials using the “hot wire” method. Sci. Review Engin. Environ. Sci., 2019(1), 153–160. DOI: 10.22630/PNIKS.2019.28.1.14.
  • 23. Buczkowska, K. E., Prałat, K., Ciemnicka, J., & Koper, A. (2021). Comparison of the Thermal Properties of Geopolymer and Modified Gypsum. Polymers 13(8), 1220. DOI: 10.3390/polym13081220.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-13503669-b0d7-461e-8dcf-73a2901b02ec
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.