PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Effect of Power Ultrasound on Microstructure Evolution During the Transient Liquid Stage of Ultrasonic-Promoted TLP Bonding SiCp/Al MMCs

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Ultrasound-promoted transient liquid phase bonding (U-TLP) is a high quality, high efficiency, and low-cost method for fast bonding of difficult-wetting materials in the atmospheric environment. In this paper, U-TLP was used to bond SiC particles reinforced aluminium-based metal matrix composite which particle volume fraction was 70%. The pure zinc foil was used as the intermediate layer. The effects of ultrasonic on microstructure evolution and mechanical properties of joints during the transient liquefaction stage were investigated. The mechanism of ultrasonic effects in the transient liquefaction stage of U-TLP was also inducted. The results showed that high volume fraction SiCp/Al MMCs were bonded well at low temperature in the air environment. Ultrasonic vibration can remove the oxide film on the surface of aluminum matrix composites, enhance the wettability of SiC particles with weld metal, promote atomic diffusion and homogenization of SiC particles, and improve the welding quality and efficiency. Reasonable increase of ultrasonic vibration time could effectively improve the joint strength.
Twórcy
  • Shenyang Aerospace University, School of Materials Science and Engineering, Shenyang 110136, China
autor
  • Shenyang Aerospace University, School of Materials Science and Engineering, Shenyang 110136, China
  • The University of Queensland, Australia
autor
  • Shenyang Aerospace University, School of Materials Science and Engineering, Shenyang 110136, China
autor
  • Shenyang Aerospace University, School of Materials Science and Engineering, Shenyang 110136, China
autor
  • Shenyang Aerospace University, School of Materials Science and Engineering, Shenyang 110136, China
autor
  • Shenyang Aerospace University, School of Materials Science and Engineering, Shenyang 110136, China
Bibliografia
  • [1] O. Beffort, S. Long, C. Cayron, J. Kuebler, P.A. Buffat, Compos. Sci. Technol. 67, 737-745 (2007).
  • [2] D. Lloyd, Int. Mater. Rev. 39, 1-23 (1994).
  • [3] M.B.D. Ellis, Int. Mater. Rev. 41, 41-58 (1996).
  • [4] D. Storjohann, O.M. Barabash, S.A. David, P.S. Sklad, E.E. Bloom, S.S. Babu, Metall. Mater. Trans A. 36, 3237-3247 (2005).
  • [5] Z.Y. Ma, A.H. Feng, B.L. Xiao, J.Z. Fan, L.K. Shi, Mater. Sci. Forum. 539-543, 3814-3819 (2007).
  • [6] O.T. Midling, Ø. Grong, Key. Eng. Mat. 104-107, 355-372 (1995).
  • [7] T. Yue, J. Xu, H. Man, Appl. Compos. Mater. 4, 53-64 (1997).
  • [8] R. Gürler, J. Mater. Sci. Lett. 17, 1543-1544 (1998).
  • [9] X.-P. Zhang, L. Ye, Y.-W. Mai, G.-F. Quan, W. Wei, Compos. Part A-Appl. S. 30, 1415-1421 (1999).
  • [10] A. Urena, M. Escalera, L. Gil, Compos. Sci. Technol. 60, 613-622 (2000).
  • [11] H. Wang, Y. Chen, L. Yu, Mat. Sci. Eng. A-Struct. 293, 1-6 (2000).
  • [12] D. Storjohann, O. Barabash, S. David, P. Sklad, E. Bloom, S. Babu, Metall. Mater. Trans. A. 36, 3237-3247 (2005).
  • [13] H. Uzun, Mater. Design. 28, 1440-1446 (2007).
  • [14] W. Xi-He, N. Ji-Tai, G. Shao-Kang, W. Le-Jun, C. Dong-Feng, Mat. Sci. Eng. A-Struct. 499, 106-110 (2009).
  • [15] M. Bahrami, K. Dehghani, M.K.B. Givi, Mater. Design. 53, 217-225 (2014).
  • [16] T. Prater, Acta. Astronaut. 93, 366-373 (2014).
  • [17] V. Patel, S. Bhole, D. Chen, D. Ni, B. Xiao, Z. Ma, Mater. Design. 65, 489-495 (2015).
  • [18] Y. Zhai, T.H. North, J. Serrato-Rodrigues, J. Mater. Sci. 32, 1393-1397 (1997).
  • [19] J.-H. Huang, Y.-L. Dong, Y. Wan, X.-K. Zhao, H. Zhang, J. Mater. Process. Tech. 190, 312-316 (2007).
  • [20] J. Yan, Z. Xu, L. Shi, X. Ma, S. Yang, Mater. Design. 32, 343-347 (2011).
  • [21] G. Zhang, Z. Wei, B. Chen, B. Chen, J. Mater. Eng. Perform. 26, 5921-5937 (2017).
  • [22] G. Zhang, B. Chen, M. Jin, Mater. Trans. 56, 212-217 (2015).
  • [23] Z. Huang, Ultrason. Sonochem. 43, 101-109 (2018).
  • [24] X.P. Zhang, G.F. Quan, W. Wei, Compos. Part A-Appl. S. 30, 823-827 (1999).
  • [25] J. Niu, X. Luo, H. Tian, J. Brnic, Mater. Sci. Eng. B-Adv. 177, 1707-1711 (2012).
  • [26] Q. Wang, X. Chen, L. Zhu, J. Yan, Z. Lai, P. Zhao, J. Bao, G. Lv, C. You, X. Zhou, Ultrason. Sonochem. 34, 947-952 (2017).
  • [27] Z.W. Xu, Z.W. Li, L.M. Peng, J.C. Yan, Mater. Design. 161, 72-79 (2019).
  • [28] Z.W. Lai, R.S. Xie, C. Pan, X.G. Chen, L. Liu, W.X. Wang, G.S. Zou, Mater. Lett. 166, 219-222 (2015).
  • [29] Z.W. Lai, R.S. Xie, C. Pan, X.G. Chen, L. Liu, W.X. Wang, G.S. Zou, J. Mater. Sci. Technol. 33 (6), 567-572(2016).
  • [30] Z. Lai, X. Chen, C. Pan, R. Xie, L. Liu, G. Zou, Mater. Lett. 166, 219-222 (2016).
  • [31] Z.W. Xu, L. Ma, J.C. Yan, S.Q. Yang, S.Y. Du, Compos. Part A-Appl. S. 43 (3), 407-414 (2012).
  • [32] Z.W. Xu, L. Ma, J.C. Yan, S.Q. Yang, Mater. Chem. Phys. 148 (3), 824-832 (2014).
  • [33] L. Ma, C.Z. Zhou, Q. Wen, M.S. Li, H. Zhong, S.D. Ji, Ultrasonics. 106, 106159 (2020).
  • [34] Z.W. Xu, J.C. Yan, B.Y. Zhang, X.L. Kong, S.Q. Yang, Mat. Sci. Eng. A-Struct. 415 (1-2), 80-86 (2006).
  • [35] L. Zhu, Q. Wang, L. Shi, X. Zhang, T.H. Yang, J.C. Yan, X.Y. Zhou, S.Y. Chen, Mat. Sci. Eng. A-Struct. 711, 94-98 (2018).
  • [36] J. Maity, T.K. Pal, R. Maiti, J. Mater. Sci. 45, 3575-3587 (2010).
Uwagi
1. This research was sponsored by the National Natural Science Foundation of China (grant number 51705338), Liaoning Natural Science Foundation (grant number 20180550471), Liaoning Education Department Sci. & Tech. Project (grant number L201731).
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-134fdb5a-7817-4324-8971-1ae0ad475a87
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.