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Abstract 

The paper presents a new method of vortex core detection developed for use in CFD simulation result 

analysis. Apart from the conventional approach involving vector algebra, mainly the Lambda2 method, it 
focuses on the identification of certain features in a graphic representation of the velocity field. It is done by 

generating a series of slices of the said field in the postprocessing software and training a Convolutional 

Neural Network (AI) to recognize vortex cores. The neural network can be integrated into a simple python 
program and used to quickly identify vortex cores on a large number of images and translate their locations to 

coordinates of a CFD model for visualisation. 
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1. Introduction 

The accurate and precise description of the external flow over bodies plays a crucial role 

in many fields of engineering activities like aircrafts industry, shipbuilding, civil 

engineering, offshore structures, or turbomachinery. Aerodynamics is also a key element 

in successful vehicle design. The external flow has great importance in overall car 

efficiency and ride stability. Flow over the car is fully three-dimensional, turbulent, and 

unsteady. Besides, recirculation bubble formation and vortex detachment can be found in 

the area. These phenomena have a large impact on key factors in aerodynamic studies, 

lift and drag coefficients, relevant for driving stability and energy efficiency, 

respectively. Identifying vortex formation locations gives the possibility of lowering 

drag and reducing noise generated by the flow. The in-depth study of the turbulent flow 

around two basic car geometries (Ahmed and Asmo) is presented by Aljure et al [1].  

Many papers are dealing with the problem of vortex shedding and many vortex 

identification methods have been proposed [2,3,4]. However, a clear classification of the 

methods (together with application areas) is still not available in the literature. As a 
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result, it is very difficult for researchers to choose the right method for testing turbulent 

flow. The quantitative comparisons between different methods and their review in great 

detail, with many illustrating examples, are presented by Zhang et al [5].The various 

types of vortex generation and the related response characteristics of bluff bodies are 

described in [6]. There are presented many experiments illustrating and explaining 

vortex shedding phenomena. 

Over the past two decades Computational Fluid Dynamics (CFD) became an 

important tool in the industry and research as the great increase in computational power 

of an average CPU computational made it possible to conduct analyses on a typical 

personal computer. Due to the nature of fluid flows, most practical applications relate to 

turbulent motion. Modeling of this phenomenon is crucial within CFD, however efficient 

recognition and tracking of vortices still pose a challenge.  

2. Classical CFD approach 

As the vortices are simply regions in a fluid revolving around an axis line the logical 

approach to this problem is the mathematical analysis of the velocity field. 

One of the widely used algorithms called Lambda2 vortex criterion was proposed by 

Jeong and Hussain [2]. Applying it to a chosen point in the fluid determines whether this 

point is a part of a vortex core. The first step of the method is calculating the gradient of 

the velocity vector 𝑱 from the velocity field acquired from CFD simulation 

 

𝑱 ≡ ∇�⃗� = [
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where �⃗�  is the velocity vector and ux, uy, and uz are velocity vector components. 

It is then decomposed into its symmetric and antisymmetric parts S and 𝛀 

 

𝑺 =
𝑱+𝑱𝑇

2
,     𝛀 =

𝑱−𝑱𝑇

2
   (2)

. 

The three eigenvalues of 𝑺2 + 𝛀2are calculated for every point and ordered in such a 

way that 𝜆1 ≥ 𝜆2 ≥ 𝜆3. If for a given point 𝜆2 < 0, the point is a part of a vortex core, 

hence the method’s name. The whole point of this mathematical operations is to neglect 

the effects of viscosity and non-stationarity and then look for the area of the lowest 

pressure as it achieves the lowest value in the vortex core. 

This method is implemented in many CFD software packages and the Lambda2 

coefficient can be easily acquired from the simulation results. It has, however, few 

drawbacks: distinguishing individual vortices can be difficult as they are usually 

surrounded by a large number of smaller vortices, graphic representation on static 

images can be ambiguous (Fig. 1) and, as Lambda2 is calculated for every point, it 

significantly increases the size of a result file. 
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Figure 1. Visualisation of the Lambda2 coefficient 

3. AI-based method 

Recent developments in the field of computer science, mainly the advent of 

convolutional neural networks (CNN), gives us the possibility to approach the problem 

from a different angle. 

 

 
Figure 2. Typical Convolutional Neural Network (figure by Phung et al.,[1]) 

 

CNNs work by applying a series of mathematical operations called convolutions to 

an image and by supplying their output to a classical Neural Network (Fig. 2). CNN is 

trained on a large number of images and through the process of machine learning it gains 

the ability to associate certain features of an image with the type of the object presented 

in it.  Using the CNNs one can quickly find certain features in a given image.  

The approach described in this paper is based on training a CNN on a series of slices 

of velocity field generated using the line integral convolution (LIC) vector field 
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visualization technique (Fig. 3). Slices were set 10 mm apart along the X-axis (flow 

direction) – 1000 images over the distance of 10 meters.  

 

Figure 3. Visualization of the velocity vector field (LIC) 

Two hundred and fifty vortex cores were manually identified on 25 of the images 

generated from the results of another CFD simulation. A simple python program was 

created for this task. Locations of the vortex cores are selected by clicking on the image 

and saved in json file which is accepted by neural network software.  

The convolutional neural network chosen for this task was Keras-RetinaNet [7], 

based on ResNet50 architecture – predefined set of 50 convolutional layers (Fig. 5). It 

used so-called pre-trained weights – a large majority of the training process was 

performed on more powerful computers on a large set of random images representing 

many types of objects.  
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Figure 4. Vortex cores located by the CNN. 

Keras is a library that provides a Python interface to artificial neural networks. The 

machine learning library used here is TensorFlow which was developed by Google for 

their internal use and later released as an open source software.   

The computer used for this purpose is an ordinary personal desktop PC with an 

Ubuntu operating system. Training took approximately 3 hours. Script used to load 

images and generate sets of images for training and testing was written in python. All the 

software used is free and open-source.  

The obtained model was then used to predict the locations of vortex cores on the 

whole series of 1000 images, predicted positions being saved to another json file. Simple 

script written in python was used to translate locations of vortex cores on images to the 

coordinate system of CFD model. 
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Figure 5. Block diagram of a ResNet50 architecture (figure by Ji et al.[8]) 

 

Points obtained in this way were saved in vtu file (VTK) for visualization in 

Paraview (Fig. 4).The predicted locations correlated with the velocity field vectors are 

shown in Fig. 6. The same script was used to remove a few false positives and to connect 

the remaining points into the vortex core center lines (Fig. 7). 
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Figure 6. Vortex cores located by the CNN in relation to velocity field vectors 

 

Figure 7. Vortex core lines 
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4. CFD simulation 

Description of both Lambda2 method and proposed AI-based approach are based on a 

CFD simulation performed for the purpose of this paper. 

OpenFOAM  - a free and open-source CFD toolbox was used. It is developed by 

OpenCFD Ltd company and used both commercially and academically.  

Particular solver used here is called simpleFoam. It is a steady-state solver for 

incompressible, turbulent flows. CFD model was generated in the OpenFOAM’s internal 

meshing utility. A 3D geometry of a light-duty commercial vehicle was downloaded 

from the internet and modified for this purpose using Blender  - a free 3D computer 

graphics software. Geometry of a vehicle was placed in the middle of a CFD domain in a 

shape of a vertical cylinder 12 meters high and 56 meters in diameter (Fig. 8). 

 

 
Figure 8. CFD domain 

 

Mesh used in the simulation consists of 18 million polyhedral elements, their size 

ranging from 20 to 500 mm (Fig. 9). Flow velocity was set to 72 kph. The sides and top 

of a domain use the freestream velocity boundary condition, the bottom uses a moving 

wall condition, with the movement velocity the same as the flow velocity. The wheels 

are rotating walls, their rotational velocity matching the linear motion of the bottom 

wall. Turbulence model was set to k-omega SST [9], typical for this type of simulation, 

with turbulence kinetic energy value on the inlet equal 0.24 J/kg. It took approximately 

14 hours to generate mesh and conduct the simulation on an ordinary desktop computer. 
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Figure 9. CFD mesh in the vicinity of vehicle 

 

5. Conclusions 

 

The method described in the paper gives very good results in a short time and does not 

require additional data beyond the velocity field which is very important in time-

consuming and data-heavy CFD calculations. When using cloud computing services the 

additional disk space and data transfer volume directly contributes to the cost of 

simulation. 

Moreover, as the Lambda2 values are calculated on the points of the CFD mesh the 

accuracy of the localization of vortex centres is affected by the size of the mesh while 

the LIC vector field visualization technique and, consequently, the AI-based method of 

vortex core tracking is independent of the mesh point location and thus largely 
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unaffected by mesh size. This allows for using larger mesh sizes and shorter computation 

times without the loss of results quality. 

As the appearance of vortices is quite characteristic the proposed approach can be easily 

applied to different types of CFD simulations without the need for retraining of the 

Neural Network. By using simple script the process of vortex core tracking can be 

performed automatically after the CFD simulation ends. It is also possible to add this 

method to a visualization software in the form of a plugin. 

The method can be further improved by training on larger sets of data and larger 

images, tracking vortices along other axes, and by distinguishing the clockwise and 

counter-clockwise vortices. Post-processing of the obtained results can also be improved 

by i.e. smoothing of the vortex core lines, better algorithm for false-positive removal, 

patching the small gaps in core lines.  
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