PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Estimation of Apollo Lunar Dust Transport using Optical Extinction Measurements

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A technique to estimate mass erosion rate of surface soil during landing of the Apollo Lunar Module (LM) and total mass ejected due to the rocket plume interaction is proposed and tested. The erosion rate is proportional to the product of the second moment of the lofted particle size distribution N(D), and third moment of the normalized soil size distribution S(D), divided by the integral of S(D)⋅D2/v(D), where D is particle diameter and v(D) is the vertical component of particle velocity. The second moment of N(D) is estimated by optical extinction analysis of the Apollo cockpit video. Because of the similarity between mass erosion rate of soil as measured by optical extinction and rainfall rate as measured by radar reflectivity, traditional NWS radar/rainfall correlation methodology can be applied to the lunar soil case where various S(D) models are assumed corresponding to specific lunar sites.
Czasopismo
Rocznik
Strony
568--599
Opis fizyczny
Bibliogr. 21 poz., rys., tab., wykr.
Twórcy
autor
  • Easi-ESC, Granular Mechanics and Regolith Operations, Kennedy Space Center, FL, USA
  • NASA Granular Mechanics and Regolith Operations, Kennedy Space Center, FL, USA Florida Space Institute, University of Central Florida, Orlando, FL, USA
Bibliografia
  • [1] Atlas, D. (1953), Optical extinction by rainfall, J. Meteor. 10, 6, 486-488, DOI: 10.1175/1520-0469(1953)010<0486:OEBR>2.0.CO;2.
  • [2] Berg, M.J., C.M. Sorensen, and A. Chakrabarti (2011), A new explanation of the extinction paradox, J. Quant. Spectrosc. Rad. Trans. 112, 7, 1170-1181, DOI:10.1016/j.jqsrt.2010.08.024.
  • [3] Berger, K.J., A. Anand, P.T. Metzger, and C.M. Hrenya (2013), Role of collisions in erosion of regolith during a lunar landing, Phys. Rev. E 87, 2, 022205, DOI:10.1103/PhysRevE.87.022205.
  • [4] Clegg, R.N., B.L. Jolliff, M.S. Robinson, B.W. Hapke, and J.B. Plescia (2014), Effects of rocket exhaust on lunar soil reflectance properties, Icarus 227, 1,176-194, DOI:10.1016/j.icarus.2013.09.013.
  • [5] Haehnel, R., and W.B. Dade (2008), Physics of particle entrainment under the influence of an impinging jet. In: Proc. 26th Army Science Conference, U.S. Army, Orlando, USA.
  • [6] Immer, C., P. Metzger, P.E. Hintze, A. Nick, and R. Horan (2011a), Apollo 12 Lunar Module exhaust plume impingement on Lunar Surveyor III, Icarus 211, 2, 1089-1102, DOI: 10.1016/j.icarus.2010.11.013.
  • [7] Immer, C., J. Lane, P. Metzger, and S. Clements (2011b), Apollo video photogrammetry estimation of plume impingement effects, Icarus 214, 1, 46-52, DOI:10.1016/j.icarus.2011.04.018.
  • [8] Lane, J.E., and P.T. Metzger (2014a), Image analysis based estimates of regolith erosion due to plume impingement effects. In: Proc. 14th ASCE Int. Conf. Engineering, Science, Construction and Operations in Challenging Environments “Earth and Space 2014”, 27-29 October 2014, St. Louis, USA.
  • [9] Lane, J.E., P.T. Metzger, and J.W. Carlson (2010), Lunar dust particles blown by lander engine exhaust in rarefied and compressible flow, In: Proc. 12th ASCE Int. Conf. Engineering, Science, Construction and Operations in Challenging Environments “Earth and Space 2010”, 14-17 March 2010, Honolulu, Hawaii, USA, 134-142, DOI: 10.1061/41096(366)16.
  • [10] Lane, J.E., T. Kasparis, P.T. Metzger, and W.L. Jones (2014b), In situ disdrometer calibration using multiple DSD moments, Acta Geophys. 62, 6, 1450-1477, DOI:10.2478/s11600-014-0237-2.
  • [11] Metzger, P.T., J.E. Lane, and C.D. Immer (2008), Modification of Roberts’ theory for rocket exhaust plumes eroding lunar soil. In: Proc. 11th ASCE Int. Conf. Engineering, Science, Construction and Operations in Challenging Environments “Earth and Space 2008”, 3-5 March 2008, Long Beach, USA, 1-8, DOI: 10.1061/40988(323)4.
  • [12] Metzger, P.T., J.E. Lane, C.D. Immer, J.N. Gamsky, W. Hauslein, X. Li, R.C. Latta III, and C.M. Donahue (2010), Scaling of erosion rate in subsonic jet experiments and Apollo lunar module landings. In: Proc. 12th ASCE Int. Conf. Engineering, Science, Construction and Operations in Challenging Environments “Earth and Space 2010”, 14-17 March 2010, Honolulu, Hawaii, USA, 191-207, DOI: 10.1061/41096(366)21.
  • [13] Metzger, P.T., J. Smith, and J.E. Lane (2011), Phenomenology of soil erosion due to rocket exhaust on the Moon and the Mauna Kea lunar test site, J. Geophys. Res. 116, E6, E06005, DOI:10.1029/2010JE003745.
  • [14] Morris, A.B., D.B. Goldstein, P.L. Varghese, and L.M. Trafton (2011), Plume impingement on a dusty lunar surface, AIP Conf. Proc. 1333, 1187-1192, DOI: 10.1063/1.3562805.
  • [15] Roberts, L. (1963), The action of a hypersonic jet on a dust layer. In: 31st Ann. Meeting, Institute of Aerospace Sciences, New York, USA, IAS paper No. 63-50.
  • [16] Rosenfeld, D., D.B. Wolff, and D. Atlas (1993), General probability-matched relations between radar reflectivity and rain rate, J. Appl. Meteorol. 32, 1, 50-72, DOI:10.1175/1520-0450(1993)032<0050:GPMRBR>2.0.CO;2.
  • [17] Scott, R.F. (1975), Apollo program soil mechanics experiment, Final report, California Institute of Technology, Pasadena USA.
  • [18] Shipley, S.T., E.W. Eloranta, and J.A. Weinman (1974), Measurement of rainfall rates by lidar, J. Appl. Meteorol. 13, 7, 800-807, DOI:10.1175/1520-0450(1974)013<0800:MORRBL>2.0.CO;2.
  • [19] Smits, A.J., and J.P. Dussauge (2006), Turbulent Shear Layers in Supersonic Flow, 2nd ed., Springer Science+Business Media, New York, 424 pp.
  • [20] van de Hulst, H.C. (1957), Light Scattering by Small Particles, John Wiley & Sons, New York.
  • [21] Wexler, R., and D. Atlas (1963), Radar reflectivity and attenuation of rain, J. Appl. Meteor. 2, 2, 276-280, DOI: 10.1175/1520-0450(1963)002<0276:RRAAOR>2.0.CO;2.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1344d852-dfae-4354-95a9-3b9018e74cdb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.