PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Research of mechanical and electrical properties of Cu–Sc and Cu–Zr alloys

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The research paper presents the impact of the scandium additive and various conditions of the heat treatment on copper mechanical, electrical and heat resistance properties. The performed research works included manufacturing of CuSc0.15 and CuSc0.3 alloys through metallurgical synthesis with the use of induction furnace and following crystallization in graphite crucibles at ambient temperature. Additionally, a CuZr0.15 alloy was produced as a reference material for previously syn-thesized Cu–Sc alloys. During research, the selection of heat treatment for the produced materials was conducted in order to obtain the highest mechanical–electrical properties ratio. Materials obtained in such a way were next subjected to thermal resistance tests. Parameters of thermal resistance test included temperatures from the range of 200–700 °C and 1 h of anneal-ing time. The research has shown that CuSc0.15 and CuSc0.3 alloys have higher heat resistance after their precipitation hardening compared to the Cu–Zr alloy. The paper also presents microstructural research of the produced materials, which showed that alloying elements precipitates are mainly localized at the grain boundaries of the material structure.
Rocznik
Strony
390--404
Opis fizyczny
Bibliogr. 25 poz., fot., rys., tab., wykr.
Twórcy
  • Faculty of Non-Ferrous Metals, AGH University of Science and Technology, Kraków, Poland
  • Faculty of Non-Ferrous Metals, AGH University of Science and Technology, Kraków, Poland
  • Faculty of Non-Ferrous Metals, AGH University of Science and Technology, Kraków, Poland
  • Faculty of Non-Ferrous Metals, AGH University of Science and Technology, Kraków, Poland
  • Faculty of Non-Ferrous Metals, AGH University of Science and Technology, Kraków, Poland
  • Faculty of Non-Ferrous Metals, AGH University of Science and Technology, Kraków, Poland
  • Łukasiewicz Research Network - Institute of Non-Ferrous Metals, Gliwice, Poland
Bibliografia
  • [1] Davis JR. ASM specialty handbook: copper and copper alloys. Materials Park: ASM International; 2001.
  • [2] Liu P, Tong L, Wang J, Shi L, Tang H. Challenges and developments of copper wire bonding technology. Microelectron Reliab. 2012;52:1092–8.
  • [3] Guo N, Li D, Yu H, Xin R, Zhang Z, Li X, Liu C, Song B, Chai L. Annealing behavior of gradient structured copper and its effect on mechanical properties. Mater Sci Eng A. 2017;702:331–42.
  • [4] Campell FC. Elements metallurgy and engineering alloys. Materials Park: ASM International; 2018. p. 139–45.
  • [5] Bo H, Liu LB, Jin ZP. Thermodynamic analysis of Al–Sc, Cu–Sc and Al–Cu–Sc system. J Alloys Compd. 2010;490:318–25.
  • [6] Zhao Y, Pang T, He J, Tao X, Chen H, Ouyang Y, Du Y. Inter-diffusion behaviors and mechanical properties of Cu–Zr system. Calphad. 2018;61:92–7.
  • [7] Sarin VK, Grant NJ. Cu–Zr and Cu–Cr–Zr alloys produced from rapidly quenched powders. Metall Trans. 1972;3:875–8.
  • [8] Batra IS, Dey GK, Kulkarni UD, Banerjee S. Microstructure and properties of a Cu–Cr–Zr alloy. J Nucl Mater. 2001;299:91–100.
  • [9] Wei T, Liming B, Fengcang M, Jiandi D. Effect of Zr on as-cast microstructure and properties of Cu–Cr alloy. Vacuum. 2018;149:238–47.
  • [10] Tu JP, Qi WX, Yang YZ, Liu F, Zhang JT, Gan GY, Wang NY, Zhang XB, Liu MS. Effect of aging treatment on the electrical sliding wear behavior of Cu–Cr–Zr alloy. Wear. 2002;249:1021–7.
  • [11] Huang AH, Wang YF, Wang MS, Song LY, Li YS, Gao L, Huang CX, Zhub YT. Optimizing the strength, ductility and electrical conductivity of a Cu–Cr–Zr alloy by rotary swaging and aging treatment. Mater Sci Eng A. 2019;746:211–6.
  • [12] Wang W, Kang H, Chen Z, Chen Z, Zou C, Li R, Yin G, Wang T. Effects of Cr and Zr additions on microstructure and properties of Cu–Ni–Si alloys. Mater Sci Eng A. 2016;673:378–90.
  • [13] Zakharov MV, Zakharov AM, Popov OP, Dashevskaya NE. Effect of scandium on the properties of copper and certain copper alloys. Izvest Vuz Tsvetnaya Met. 1970;4:117–21.
  • [14] Watanabe S, Kleppa OJ. Thermochemistry of alloys of transition metals: part IV. Alloys of copper with scandium, yttrium, lantha-num, and lutetium. Metall Trans B. 1984;15:357–68.
  • [15] Yang C, Shao D, Zhang P, Gao YH, Zhang JY, Kuang J, Wu K, Liu G, Sun J. The influence of Sc solute partitioning on ductile fracture of Sc-microalloyed Al–Cu alloys. Mater Sci Eng A. 2018;717:113–23.
  • [16] Senkov ON, Shagiev MR, Senkova SV, Miracle DB. Precipitation of Al3(Sc, Zr) particles in an Al–Zn–Mg–Cu–Sc–Zr alloy dur-ing conventional solution heat treatment and its effect on tensile properties. Acta Mater. 2008;56:3723–38.
  • [17] Kim WJ, Kim JK, Kim HK, Park JW, Jeong YH. Effect of post equal-channel-angular-pressing aging on the modified 7075 Al alloy containing Sc. J Alloys Compd. 2008;450:222–8.
  • [18] Sun F, Nash GL, Li Q, Liu E, He C, Shi C, Zhao N. Effect of Sc and Zr additions on microstructures and corrosion behavior of Al–Cu–Mg–Sc–Zr alloys. J Mater Sci Technol. 2017;33:1015–22.
  • [19] Turchanin MA. Phase equilibria and thermodynamics of binary copper systems with 3 d-metals. I. the copper-scandium system. Powder Metall Met Ceram. 2006;45:143–52.
  • [20] Predel B. Phase equilibria, crystallographic and thermodynamic data of binary alloys. Physical chemistry. 1st ed. Berlin, Heidel-berg: Springer; 2016.
  • [21] ZHC Copper, UNS C15100, H01 Temper, MatWeb, Your Source for Materials Information—www.matwe b.com.
  • [22] ZHC Copper, UNS C15100, H02 Temper, MatWeb, Your Source for Materials Information—www.matwe b.com.
  • [23] ZHC Copper, UNS C15100, H03 Temper, MatWeb, Your Source for Materials Information—www.matwe b.com.
  • [24] ZHC Copper, UNS C15100, H06 Temper, MatWeb, Your Source for Materials Information—www.matwe b.com.
  • [25] ZHC Copper, UNS C15100, H08 Temper, MatWeb, Your Source for Materials Information—www.matwe b.com.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-133c7ba7-2147-4ed1-be35-6849f1c96941
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.