PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Simulation Time Reduction with 2.5D FEM Analysis for Axial Flux Machines

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, an approach for a two-and-half-dimensional (2.5D) finite element method (FEM)-based analysis, or quasi-threedimensional (3D) FEM analysis, of an axial flux machine is discussed. By cutting the 3D model laterally and thereby creating cylindrical surface cuts, the 3D model can be split into several cylindrical surfaces. Transforming those cylindrical cuts into planes leads to a layer-based two-dimensional (2D) model with different radii for each layer. By integrating over all lateral surface cuts, the results for the entire axial flux machine can be determined. In comparison to the simulation of a full 3D FEM model, the simulation of the proposed 2.5D model is much faster. To validate the approach, the two main types of axial flux machines are simulated with both 3D-FEM-based model and 2.5D-FEM-based approach, and the results are presented in this paper.
Wydawca
Rocznik
Strony
100--108
Opis fizyczny
Bibliogr. 17 poz., rys., tab.
Twórcy
autor
  • Chair of Electrical Drive System Development, Flensburg University of Applied Sciences, Flensburg, Germany
  • Chair of Electrical Drive System Development, Flensburg University of Applied Sciences, Flensburg, Germany
  • Chair of Electrical Drive System Development, Flensburg University of Applied Sciences, Flensburg, Germany
autor
  • Chair of Electrical Drive System Development, Flensburg University of Applied Sciences, Flensburg, Germany
  • Chair of Electrical Drive System Development, Flensburg University of Applied Sciences, Flensburg, Germany
Bibliografia
  • Dedden, R. (2012). Model Order Reduction using the Discrete Empirical Interpolation Method | TU Delft Repositories. Available at: https://repository.tudelft. nl/islandora/object/uuid:6f1531d7-a956-4c70- b8af-149111a9243d. (Last accessed on March 3rd 2023).
  • Egea, A., Almandoz, G., Poza, J. and Gonzalez, A. (2010). Axial flux machines modelling with the combination of 2D FEM and analytic tools. In: The XIX International Conference on Electrical Machines – ICEM 2010 [Preprint]. Available at: https://doi.org/10.1109/icelmach.2010.5608115.
  • Gołębiowski, M. (2018). Functional simulation model of the axial flux permanent magnet generator – Archives of Electrical Engineering – PAS Journals. Available at: https://journals.pan.pl/dlibra/ publication/124745/edition/108845/content. (Last accessed on March 3rd 2023).
  • Gulec, M. and Aydin, M. (2017). Implementation of Different 2D Finite Element Modelling Approaches in Axial Flux Permanent Magnet Disc Machines.” IET Electric Power Applications, 12(2), pp. 195–202. Available at: https://doi.org/10.1049/ iet-epa.2017.0434.
  • Guo, B., Peng, F., Khedda, D. Z., Dubas, F. and Huang, Y. (2022). Transformation between Axial- and Radial- Flux Permanent-Magnet Machines. IEEE Transactions on Transportation Electrification, pp. 1-1. Available at: https://doi.org/10.1109/ tte.2022.3218792.
  • Hao, Z. (2022). A Review of Axial-Flux Permanent-Magnet Motors: Topological Structures, Design, Optimization and Control Techniques. Available at: https://www.mdpi.com/2075- 1702/10/12/1178.
  • Hemeida, A., Lehikoinen, A., Rasilo, P., Vansompel, H., Belahcen, A., Arkkio, A. and Sergeant, P. (2019). A Simple and Efficient Quasi-3D Magnetic Equivalent Circuit for Surface Axial Flux Permanent Magnet Synchronous Machines. IEEE Transactions on Industrial Electronics, 66(11), pp. 8318-8333. Available at: https://doi. org/10.1109/tie.2018.2884212.
  • Ishikawa, T. (2015). Design of an axial-flux type permanent-magnet generator. 2015 IEEE Magnetics Conference (INTERMAG). [Preprint]. Available at: https://doi.org/10.1109/ intmag.2015.7157417.
  • Kim, K. H. and Woo, D. K. (2022). Novel Quasi-Three-Dimensional Modeling of Axial Flux In-Wheel Motor With Permanent Magnet Skew. IEEE Access, 10, pp. 98842-98854. Available at: https://doi.org/10.1109/access.2022.3206774.
  • Löhlein, B. (2019). Mechatronische Antriebssysteme mit PM-Synchronmaschinen und ihr Entwurf. Shaker Verlag. https://www.shaker.de/de/content/catalogue/index.asp?lang=de&ID=8&ISBN=978- 3-8440-8144-2&search=yes ISBN: 978-3-8440-8144-2
  • Lubin, T., Mezani, S. and Rezzoug, A. (2013). Development of a 2-D Analytical Model for the Electromagnetic Computation of Axial-Field Magnetic Gears. IEEE Transactions on Magnetics, 49(11), pp. 5507-5521. Available at: https://doi.org/10.1109/tmag.2013.2267746
  • Parviainen, A., Niemela, M. and Pyrhonen, J. (2004). Modeling of Axial Flux Permanent-Magnet Machines. IEEE Transactions on Industry Applications, 40(5), pp. 1333-1340. Available at: https://doi.org/10.1109/tia.2004.834086.
  • Ponomarev, P., Keränen, J., Lyly, M., Westerlund, J. and Råback, P. (2016). Multi-slice 2.5D modelling and validation of skewed electrical machines using open-source tools. In: 2016 IEEE Conference on Electromagnetic Field Computation (CEFC) [Preprint]. Available at: https://doi.org/10.1109/ cefc.2016.7815918.
  • Simon-Sempere, V., Simón-Gómez, A., Burgos-Payán, M. and Cerquides-Bueno, J. R. (2021). Optimisation of Magnet Shape for Cogging Torque Reduction in Axial-Flux Permanent-Magnet Motors. IEEE Transactions on Energy Conversion, 36(4), pp. 2825-2838. Available at: https://doi. org/10.1109/tec.2021.3068174
  • Smoleń (2018). Computationally efficient method for determining the most important electrical parameters of axial field permanent magnet machine. Bulletin of the Polish Academy of Sciences: Technical Sciences - PAS Journals, Available at: https://journals.pan.pl/dlibra/ publication/125943/edition/109885/content.
  • Using Symmetry to Reduce Model Size (no date). Available at: https://www.comsol.com/support/ learning-center/article/Using-Symmetry-to-Reduce-Model-Size-49411. (Accessed on January 18th 2023).
  • Van Der Giet, M., Schlensok, C., Schmulling, B. and Hameyer, K. (2008). Comparison of 2-D and 3-D Coupled Electromagnetic and Structure-Dynamic Simulation of Electrical Machines. IEEE Transactions on Magnetics, 44(6), pp. 1594–1597. Available at: https://doi. org/10.1109/tmag.2007.916121.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1337a36e-8a0f-4187-a49b-f428b58c17bf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.