PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Random forest assessment of correlation between environmental factors and genetic differentiation of populations : case of marine mussels Mytilus

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The novelmachine learning technique Random Forest (RF) was used to test if the genetic differentiation of populations of marine species maybe related to any of the key environmental variables known to shape species distributions. The study was performed in North and Baltic Sea characterized by strong gradients of environmental factors and almost continuous distributions of Mytilus mussel populations. Assessment of the species identity was performed using four nuclear DNA markers, and previously published single nucleotide polymorphism (SNP) data. A general pattern of cline variation was observed with increasing Mytilus trossulus share towards the eastern Baltic Sea. Average allele share rose to 61% in Höga Kusten, Gulf of Bothnia. All Baltic Sea samples revealed a strong introgression of Mytilus edulis and a limited introgression of M. trossulus through the Danish Straits. The studied environmental variables described 67 and 68% of the variability in the allele frequencies of M. edulis and M. trossulus. Salinity defined over 50% of the variability in the gene frequencies of the studied Mytilus spp. populations. Changes along this environmental gradient were not gradual but instead a significant shift from gene dominance was found at a salinity of 12 PSU. Water temperature and the trophic status of the sea area had only moderate association with the gene frequencies. The obtained results showed that the novel machine learning technique can be successfully used for finding correlations between genetic differentiation of populations and environmental variables and for defining the functional form of these linkages.
Czasopismo
Rocznik
Strony
131--142
Opis fizyczny
Bibliogr. 97 poz., mapa, rys., tab., wykr.
Twórcy
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
autor
  • Arctic Research Centre, Department of Bioscience, Aarhus University, Aarhus, Denmark
autor
  • Department of Ecology, Environment and Plant Sciences, Stockholm University, Sweden
autor
  • Estonian Marine Institute, University of Tartu, Tallinn, Estonia
  • Estonian Marine Institute, University of Tartu, Tallinn, Estonia
autor
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
Bibliografia
  • [1] Albalat, A., Potrykus, J., Pempkowiak, J., Porte, C., 2002. Assessment of organotin pollution along the Polish coast (Baltic Sea) by using mussels and fish as sentinel organisms. Chemosphere 47 (2), 165-171, http://dx.doi.org/10.1016/S0045-6535(01)00294-6.
  • [2] BACC Author Team, 2015.In: II Second Assessment of Climate Change for the Baltic Sea Basin. Springer-Open, Cham, Heidelberg, New York, Dordrecht, London, 501 pp.
  • [3] Bach, L., Zbawicka, M., Strand, J., Wenne, R., 2018. Mytilus trossulus in NW Greenland is genetically more similar to North Pacific than NW Atlantic populations of the species. Mar. Biodivers., 7 pp., http://dx.doi.org/10.1007/s12526-018-0870-0.
  • [4] Banks, S. C., Ling, S. D., Johnson, C. R., Piggott, M. P., Williamson, J. E., Beheregaray, L. B., 2010. Genetic structure of a recent climate change-driven range extension. Mol. Ecol. 19 (10), 2011-2024, http://dx.doi.org/10.1111/j.1365-294X.2010.04627.x.
  • [5] Barsiene, J., Rybakovas, A., Garnaga, G., Andreikenaite, L., 2012. Environmental genotoxicity and cytotoxicity studies in mussels before and after an oil spill at the marine oil terminal in the Baltic Sea. Environ. Monit. Assess. 184 (4), 2067-2078, http://dx.doi.org/10.1007/s10661-011-2100-0.
  • [6] Bergström, P., Carlsson, M. S., Lindegarth, M., Petersen, J. K., Lindegarth, S., Holmer, M., 2017. Testing the potential for improving quality of sediments impacted by mussel farms using bioturbating polychaete worms. Aquacult. Res. 48 (1), 161-176, http://dx.doi.org/10.1111/are.12870.
  • [7] Bierne, N., Bonhomme, F., David, P., 2003. Habitat preference and the marine-speciation paradox. Proc. R. Soc. Lond. B 270 (1522), 1399-1406, http://dx.doi.org/10.1098/rspb.2003.2404.
  • [8] Bjork, M., Gilek, M., 1997. Bioaccumulation kinetics of PCB 31, 49 and 153 in the blue mussel, Mytilus edulis L as a function of algal food concentration. Aquat. Toxicol. 38 (1-3), 101-123, http://dx.doi.org/10.1016/S0166-445X(96)00837-5.
  • [9] Bonsdorff, E., Pearson, T. H., 1999. Variation in the sublittoral macro-zoobenthos of the Baltic Sea along environmental gradients: a functional-group approach. Austral. J. Ecol. 24 (4), 312-326, http://dx.doi.org/10.1046/j.1442-9993.1999.00986.x.
  • [10] Bosch, S., Tyberghein, L., Deneudt, K., Hernandez, F., De Clerck, O., Syphard, A., 2018. In search of relevant predictors for marine species distribution modelling using the MarineSPEED benchmark dataset. Divers. Distrib. 24 (2), 144-157, http://dx.doi.org/10.1111/ddi.12668.
  • [11] Breiman, L., 2001. Random Forests. Mach. Learn. 45 (1), 5-32, http://dx.doi.org/10.1023/A:1010933404324.
  • [12] Breiman, L., Cutler, A., 2015. Package 'random forest'. https://cran.r-project.org/web/packages/randomForest/randomForest.pdf.
  • [13] Cuéllar-Pinzón, J., Presa, P., Hawkins, S. J., Pita, A., 2016. Genetic markers in marine fisheries: types, tasks and trends. Fish. Res. 173, 194-205, http://dx.doi.org/10.1016/j.fishres.2015.10.019.
  • [14] Dabrowska, H., Kopko, O., Lehtonen, K. K., Lang, T., Waszak, I., Balode, M., Strode, E., 2017. An integrated assessment of pollution and biological effects in flounder, mussels and sediment in the southern Baltic Sea coastal area. Environ. Sci. Pollut. Res. 24 (4), 3626-3639, http://dx.doi.org/10.1007/s11356-016-8117-8.
  • [15] Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., Marquez, J. R. G., Gruber, B., Lafourcade, B., Leitao, P. J., Munkemuller, T., McClean, C., Osborne, P. E., Reineking, B., Schroder, B., Skidmore, A. K., Zurell, D., Lautenbach, S., 2013. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36 (1), 27-46, http://dx.doi.org/10.1111/j.1600-0587.2012.07348.x.
  • [16] Dowd, W. W., Somero, G. N., 2013. Behavior and survival of Mytilus congeners following episodes of elevated body temperature in air and seawater. J. Exp. Biol. 216 (3), 502-514, http://dx.doi.org/10.1242/jeb.076620.
  • [17] Earl, D. A., vonHoldt, B. M., 2012. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4 (2), 359-361, http://dx.doi.org/10.1007/s12686-011-9548-7.
  • [18] Elith, J., Graham, C. H., Anderson, R. P., Dudík, M., Ferrier, S., Guisan, A., Hijmans, R. J., Huettmann, F., Leathwick, J. R., Lehmann, A., Li, J., Lohmann, L. G., Loiselle, B. A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, Jacob, McC, Peterson, A. T., Phillips, S. J., Richardson, K., Scachetti-Pereira, R., Schapire, R. E., Soberón, J., Williams, S., Wisz, M. S., Zimmermann, N. E., 2006. Novel methods improve prediction of species' distributions from occurrence data. Ecography 29 (2), 129-151, http://dx.doi.org/10.1111/j.2006.0906-7590.04596.x.
  • [19] Elith, J., Leathwick, J. R., Hastie, T., 2008. A working guide to boosted regression trees. J. Anim. Ecol. 77 (4), 802-813, http://dx.doi.org/10.1111/j.1365-2656.2008.01390.x.
  • [20] Ericson, H., Thorsen, G., Kumblad, L., 2010. Physiological effects of diclofenac, ibuprofen and propranolol on Baltic Sea blue mussels. Aquat. Toxicol. 99 (2), 223-231, http://dx.doi.org/10.1016/j.aquatox.2010.04.017.
  • [21] Evanno, G., Regnaut, S., Goudet, J., 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14 (8), 2611-2620, http://dx.doi.org/10.1111/j.1365-294X.2005.02553.x.
  • [22] Excoffier, L., Laval, G., Schneider, S., 2005. Arlequin (version 3.0): an integrated software package for population genetics data Analysis. Evol. Bioinform. Online 1, 47-50.
  • [23] Filipowicz, M., Burzynski, A., Smietanka, B., Wenne, R., 2008. Recombination in mitochondrial DNA of European mussels Mytilus. J. Mol. Evol. 67 (4), 377-388, http://dx.doi.org/10.1007/s00239-008-9157-6.
  • [24] Fraïsse, C., Belkhir, K., Welch, J. J., Bierne, N., 2016. Local interspecies introgression is the main cause of extreme levels of intraspecific differentiation in mussels. Mol. Ecol. 25 (1), 269-286, http://dx.doi.org/10.1111/mec.13299.
  • [25] Friedman, J. H., 2001. Greedy function approximation: a gradient boosting machine. Ann. Stat. 29 (1), 1189-1232, http://dx.doi.org/10.1111/mec.13299.
  • [26] Gardner, J. P., Zbawicka, M., Westfall, K. M., Wenne, R., 2016. Invasive blue mussels threaten regional scale genetic diversity in mainland and remote offshore locations: the need for baseline data and enhanced protection in the Southern Ocean. Glob. Change Biol. 22 (9), 3182-3195, http://dx.doi.org/10.1111/gcb.13332.
  • [27] Gilg, M. R., Hilbish, T. J., 2003. The geography of marine larval dispersal: coupling genetics with fine-scale physical oceanography. Ecology 84 (11), 2989-2998, http://dx.doi.org/10.1890/02-0498.
  • [28] Grabowska, M., Grzelak, K., Kukliński, P., 2015. Rock encrusting assemblages: structure and distribution along the Baltic Sea. J. Sea Res. 103, 24-31, http://dx.doi.org/10.1016/j.seares.2015.05.003.
  • [29] Hastie, T., Tibshirani, R., Friedman, J. H., 2009. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer-Verlag, New York, 744 pp.
  • [30] Heath, D. D., Rawson, P. D., Hilbish, T. J., 1995. PCR-based nuclear markers identify alien blue mussel (Mytilus spp.) genotypes on the west coast of Canada. Can. J. Fish. Aquat. Sci. 52 (12), 2621-2627, http://dx.doi.org/10.1139/f95-851.
  • [31] Hoarau, G., Rijnsdorp, A. D., Van Der Veer, H. W., Stam,W. T., Olsen, J. L., 2002. Population structure of plaice (Pleuronectes platessa L.) in northern Europe: microsatellites revealed large-scale spatial and temporal homogeneity. Mol. Ecol. 11 (7), 1165-1176, http://dx.doi.org/10.1046/j.1365-294X.2002.01515.x.
  • [32] Hoher, N., Kohler, A., Strand, J., Broeg, K., 2012. Effects of various pollutant mixtures on immune responses of the blue mussel (Mytilus edulis) collected at a salinity gradient in Danish coastal waters. Mar. Environ. Res. 75 (SI), 35-44, http://dx.doi.org/10.1016/j.marenvres.2011.11.003.
  • [33] Inoue, K., Waite, J. H., Matsuoka, M., Odo, S., Harayama, S., 1995. Interspecific variations in adhesive protein sequences of Mytilus edulis, M. galloprovincialis, and M. trossulus. Biol. Bull. 189 (3), 370-375, http://dx.doi.org/10.2307/1542155.
  • [34] Isæus, M., 2004. Factors structuring Fucus communities at open and complex coastlines in the Baltic Sea. University of Stockholm Print Center, Stockholm, Frescati, 40 pp.
  • [35] Jakobsson, M., Rosenberg, N. A., 2007. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23 (14), 1801-1806, http://dx.doi.org/10.1093/bioinformatics/btm233.
  • [36] Johannesson, K., André, C., 2006. INVITED REVIEW: life on the margin: genetic isolation and diversity loss in a peripheral marine ecosystem, the Baltic Sea. Mol. Ecol. 15 (8), 2013-2029, http://dx.doi.org/10.1111/j.1365-294X.2006.02919.x.
  • [37] Kautsky, N., Evans, S., 1987. Role of biodeposition by Mytilus edulis in the circulation of matter and nutrients in a Baltic coastal ecosystem. Mar. Ecol. Prog. Ser. 38 (3), 201-212, http://dx.doi.org/10.3354/meps038201.
  • [38] Kijewska, A., Burzynski, A., Wenne, R., 2009. Molecular identification of European flounder (Platichthys flesus) and its hybrids with European plaice (Pleuronectes platessa). ICES J. Mar. Sci. 66 (5), 902-906, http://dx.doi.org/10.1093/icesjms/fsp110.
  • [39] Kijewska, A., Kalamarz-Kubiak, H., Arciszewski, B., Guellard, T., Petereit, C., Wenne, R., 2016. Adaptation to salinity in Atlantic cod from different regions of the Baltic Sea. J. Exp. Mar. Biol. Ecol. 478, 62-67, http://dx.doi.org/10.1016/j.jembe.2016.02.003.
  • [40] Kijewski, T., Śmietanka, B., Zbawicka, M., Gosling, E., Hummel, H., Wenne, R., 2011. Distribution of Mytilus taxa in European coastal areas as inferred from molecular markers. J. Sea Res. 65 (2), 224-234, http://dx.doi.org/10.1016/j.seares.2010.10.004.
  • [41] Kijewski, T., Wijsman, J. W. M., Hummel, H., Wenne, R., 2009. Genetic composition of cultured and wild mussels Mytilus from The Netherlands and transfers from Ireland and Great Britain. Aquaculture 287 (3-4), 292-296, http://dx.doi.org/10.1016/j.aquaculture.2008.10.048.
  • [42] Kijewski, T. K., Zbawicka, M., Väinölä, R., Wenne, R., 2006. Introgression and mitochondrial DNA heteroplasmy in the Baltic populations of mussels Mytilus trossulus and M. edulis. Mar. Biol. 149 (6), 1371-1385, http://dx.doi.org/10.1007/s00227-006-0316-2.
  • [43] Kopecka, J., Lehtonen, K. K., Barsiene, J., Broeg, K., Vuorinen, P. J., Gercken, J., Pempkowiak, J., 2006. Measurements of biomarker levels in flounder (Platichthys flesus) and blue mussel (Mytilus trossulus) from the Gulf of Gdansk (southern Baltic). Mar. Pollut. Bull. 53 (8-9), 406-421, http://dx.doi.org/10.1016/j.marpolbul.2006.03.008.
  • [44] Kotta, J., Oganjan, K., Lauringson, V., Parnoja, M., Kaasik, A., Rohtla, L., Kotta, I., Orav-Kotta, H., 2015. Establishing functional relationships between abiotic environment, macrophyte coverage, resource gradients and the distribution of Mytilus trossulus in a brackish non-tidal environment. PLOS ONE 10 (8), e0136949, http://dx.doi.org/10.1371/journal.pone.0136949.
  • [45] Larraín, M. A., Zbawicka, M., Araneda, C., Gardner, J. P. A., Wenne, R., 2018. Native and invasive taxa on the Pacific coast of South America: impacts on aquaculture, traceability and biodiversity of blue mussels (Mytilus spp.). Evol. Appl. 11 (3), 298-311, http://dx.doi.org/10.1111/eva.12553.
  • [46] Larsen, P., Riisgård, H., 2016. Growth-prediction model for blue mussels (Mytilus edulis) on future optimally thinned farm-ropes in Great Belt (Denmark). J. Mar. Sci. Eng. 4 (3), 42, http://dx.doi.org/10.3390/jmse4030042.
  • [47] Larsson, J., Lind, E. E., Corell, H., Grahn, M., Smolarz, K., Lönn, M., 2017. Regional genetic differentiation in the blue mussel from the Baltic Sea area. Estuar. Coast. Shelf Sci. 195, 98-109, http://dx.doi.org/10.1016/j.ecss.2016.06.016.
  • [48] Larsson, J., Smolarz, K., Świeżak, J., Turower, M., Czerniawska, N., Grahn, M., 2018. Multi biomarker analysis of pollution effect on resident populations of blue mussels from the Baltic Sea. Aquat. Toxicol. 198, 240-256, http://dx.doi.org/10.1016/j.aquatox.2018.02.024.
  • [49] Lesser, M. P., 2016. Climate change stressors cause metabolic depression in the blue mussel, Mytilus edulis, from the Gulf of Maine. Limnol. Oceanogr. 61 (5), 1705-1717, http://dx.doi.org/10.1002/lno.10326.
  • [50] Li, S. G., Liu, C., Huang, J. L., Liu, Y.J ., Zheng, G. L., Xie, L. P., Zhang, R. Q., 2015. Interactive effects of seawater acidification and elevated temperature on biomineralization and amino acid metabolizm in the mussel Mytilus edulis. J. Exp. Biol. 218 (22), 3623-3631, http://dx.doi.org/10.1242/jeb.126748.
  • [51] Liaw, A., Wiener, M., 2002. Classification and regression by Random Forest. R. News 2/3, 18-22.
  • [52] Lockwood, B. L., Somero, G. N., 2011. Transcriptomic responses to salinity stress in invasive and native blue mussels (genus Mytilus). Mol. Ecol. 20 (3), 517-529, http://dx.doi.org/10.1111/j.1365-294X.2010.04973.x.
  • [53] Malachowicz, M., Kijewska, A., Wenne, R., 2015. Transcriptome analysis of gill tissue of Atlantic cod Gadus morhua L. from the Baltic Sea. Mar. Genomics 23, 37-40, http://dx.doi.org/10.1016/j.margen.2015.04.005.
  • [54] Meier, H. E. M., Hordoir, R., Andersson, H. C., Dieterich, C., Eilola, K., Gustafsson, B. G., Höglund, A., Schimanke, S., 2012. Modeling the combined impact of changing climate and changing nutrient loads on the Baltic Sea environment in an ensemble of transient simulations for 1961-2099. Climate Dyn. 39 (9-10), 2421-2441, http://dx.doi.org/10.1007/s00382-012-1339-7.
  • [55] Michaelidis, B., Portner, H. O., Sokolova, I., Tomanek, L., 2014. Advances in predicting the impacts of global warming on the mussels Mytilus galloprovincialis in the Mediterranean Sea. In: Goffredo, S., Dubinsky, Z. (Eds.), Mediterranean Sea: Its History and Present Challenges. Springer-Verlag, Berlin, 319-339, http://dx.doi.org/10.1007/978-94-007-6704-1_18.
  • [56] Nyberg, E., Faxneld, S., Danielsson, S., Eriksson, U., Miller, A., Bignert, A., 2015. Temporal and spatial trends of PCBs, DDTs, HCHs, and HCB in Swedish marine biota 1969-2012. Ambio 44 (Suppl. 3, SI), S484-S497, http://dx.doi.org/10.1007/s13280-015-0673-5.
  • [57] Ozoliņa, Z., 2017. Mussel farming and its potential in the Baltic Sea. Econ. Bus. 30 (1), 40-50, http://dx.doi.org/10.1515/eb-2017-0004.
  • [58] Peakall, R., Smouse, P. E., 2012. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research —an update. Bioinformatics 28 (19), 2537-2539, http://dx.doi.org/10.1093/bioinformatics/bts460.
  • [59] Pempkowiak, J., Pazdro, K., Kopecka, J., Perez, E., Sole, M., 2006. Toxicants accumulation rates and effects in Mytilus trossulus and Nereis diversicolor exposed separately or together to cadmium and PAHs. J. Environ. Sci. Health Part A: Toxic/Hazard. Subst. Environ. Eng. 41 (11), 2571-2586, http://dx.doi.org/10.1080/10934520600927963.
  • [60] Petersen, J. K., Hasler, B., Timmermann, K., Nielsen, P., Tørring, D. B., Larsen, M. M., Holmer, M., 2014. Mussels as a tool for mitigation of nutrients in the marine environment. Mar. Pollut. Bull. 82 (1-2), 137-143, http://dx.doi.org/10.1016/j.marpolbul.2014.03.006.
  • [61] Piwoni-Piórewicz, A., Kuklinski, P., Strekopytov, S., Humphreys-Williams, E., Najorka, J., Iglikowska, A., 2017. Size effect on the mineralogy and chemistry of Mytilus trossulus shells from the southern Baltic Sea: implications for environmental monitoring. Environ. Monit. Assess. 189 (4), 197, http://dx.doi.org/10.1007/s10661-017-5901-y.
  • [62] Pocwierz-Kotus, A., Bernas, R., Debowski, P., Kent, M. P., Lien, S., Kesler, M., Titov, S., Leliuna, E., Jespersen, H., Drywa, A., Wenne, R., 2014. Genetic differentiation of southeast Baltic populations of sea trout inferred from single nucleotide polymorphisms. Anim. Genet. 45 (1), 96-104, http://dx.doi.org/10.1111/age.12095.
  • [63] Potrykus, J., Albalat, A., Pempkowiak, J., Porte, C., 2003. Content and pattern of organic pollutants (PAHs, PCBs and DDT) in blue mussels (Mytilus trossulus) from the southern Baltic Sea. Oceanologia 45 (2), 337-355.
  • [64] Pritchard, J. K., Stephens, M., Donnelly, P., 2000. Inference of population structure using multilocus genotype data. Genetics 155 (2), 945-959.
  • [65] Protasowicki, M., Dural, M., Jaremek, J., 2008. Trace metals in the shells of blue mussels (Mytilus edulis) from the Poland coast of Baltic sea. Environ. Monit. Assess. 141 (1-3), 329-337, http://dx.doi.org/10.1007/s10661-007-9899-4.
  • [66] Qiu, J.-W., Tremblay, R., Bourget, E., 2002. Ontogenetic changes in hyposaline tolerance in the mussels Mytilus edulis and M. trossulus: implications for distribution. Mar. Ecol. Prog. Ser. 228, 143-152, http://dx.doi.org/10.3354/meps228143.
  • [67] Rawson, P. D., Hilbish, T. J., 1998. Asymmetric introgression of mitochondrial DNA among European populations of blue mussels (Mytilus spp.). Evolution 52 (1), 100-108, http://dx.doi.org/10.1111/j.1558-5646.1998.tb05142.x.
  • [68] Riddle, B. R., Dawson, M. N., Hadly, E. A., Hafner, D. J., Hickerson, M. J., Mantooth, S. J., Yoder, A. D., 2008. The role of molecular genetics in sculpting the future of integrative biogeography. Prog. Phys. Geogr. 32 (2), 173-202, http://dx.doi.org/10.1177/0309133308093822.
  • [69] Riginos, C., Wang, D., Abrams, A. J., 2006. Geographic variation and positive selection on M7 lysin, an acrosomal sperm protein in mussels (Mytilus spp.). Mol. Biol. Evol. 23 (10), 1952-1965, http://dx.doi.org/10.1093/molbev/msl062.
  • [70] Silliman, B. R., Bertness, M. D., Altieri, A. H., Griffin, J. N., Bazterrica, M. C., Hidalgo, F. J., Crain, C. M., Reyna, M. V., 2011. Whole-community facilitation regulates biodiversity on Patagonian rocky shores. PLOS One 6 (10), e24502, http://dx.doi.org/10.1371/journal.pone.0024502.
  • [71] Smietanka, B., Zbawicka, M., Sanko, T., Wenne, R., Burzynski, A., 2013. Molecular population genetics of male and female mitochondrial genomes in subarctic Mytilus trossulus. Mar. Biol. 160 (7), 1709-1721, http://dx.doi.org/10.1007/s00227-013-2223-7.
  • [72] Stuckas, H., Knobel, L., Schade, H., Breusing, C., Hinrichsen, H. H., Bartel, M., Langguth, K., Melzner, F., 2017. Combining hydrodynamic modelling with genetics: can passive larval drift shape the genetic structure of Baltic Mytilus populations? Mol. Ecol. 26 (10), 2765-2782, http://dx.doi.org/10.1111/mec.14075.
  • [73] Stuckas, H., Stoof, K., Quesada, H., Tiedemann, R., 2009. Evolutionary implications of discordant clines across the Baltic Mytilus hybrid zone (Mytilus edulis and Mytilus trossulus). Heredity 103 (2), 146-156, http://dx.doi.org/10.1038/hdy.2009.37.
  • [74] Sylvester, E. V. A., Bentzen, P., Bradbury, I. R., Clement, M., Pearce, J., Horne, J., Beiko, R. G., 2018. Applications of random forest feature selection for fine-scale genetic population assignment. Evol. Appl. 11 (2), 153-165, http://dx.doi.org/10.1111/eva.12524.
  • [75] Szefer, P., Frelek, K., Szefer, K., Lee, C. B., Kim, B. S., Warzocha, J., Zdrojewska, I., Ciesielski, T., 2002. Distribution and relationships of trace metals in soft tissue, byssus and shells of Mytilus edulis trossulus from the southern Baltic. Environ. Pollut. 120 (2), 423-444, http://dx.doi.org/10.1016/S0269-7491(02)00111-2.
  • [76] Szefer, P., Szefer, K., 1990. Metals in molluscs and associated bottom sediments of the Southern Baltic. Helgolander Meeresun. 44 (3-4), 411-424, http://dx.doi.org/10.1007/BF02365477.
  • [77] Szefer, P., Wenne, R., 1987. Concentration of uranium and thorium in molluscs inhabiting Gdańsk Bay, Baltic Sea. Sci. Total Environ. 65, 191-202, http://dx.doi.org/10.1016/0048-9697(87)90172-0.
  • [78] Szymczak-Zyla, M., Wawrzyniak-Wydrowska, B., Kowalewska, G., 2006. Products of chlorophyll a transformation by selected benthic organisms in the Odra Estuary (southern Baltic Sea). Hydrobiologia 554, 155-164, http://dx.doi.org/10.1007/s10750-005-1016-5.
  • [79] Telesca, L., Michalek, K., Sanders, T., Peck, L. S., Thyrring, J., Harper, E. M., 2018. Blue mussel shell shape plasticity and natural environments: a quantitative approach. Sci. Rep. 8, Art. No. 2865, 15 pp., http://dx.doi.org/10.1038/s41598-018-20122-9.
  • [80] Thomsen, J., Melzner, F., 2010. Moderate seawater acidification does not elicit long-term metabolic depression in the blue mussel Mytilus edulis. Mar. Biol. 157 (12), 2667-2676, http://dx.doi.org/10.1007/s00227-010-1527-0.
  • [81] Utermann, C., Parrot, D., Breusing, C., Stuckas, H., Staufenberger, T., Blumel, M., Labes, A., Tasdemir, D., 2018. Combined genotyping, microbial diversity and metabolite profiling studies on farmed Mytilus spp. from Kiel Fjord. Sci. Rep. 8, Art No. 7983, 13 pp., http://dx.doi.org/10.1038/s41598-018-26177-y.
  • [82] Väinölä, R., Hvilsom, M. M., 1991. Genetic divergence and a hybryd zone between Baltic and North Sea Mytilus populations (Mytilidae: Mollusca). Biol. J. Linn. Soc. 43 (2), 127-148, http://dx.doi.org/10.1111/j.1095-8312.1991.tb00589.x.
  • [83] Väinölä, R., Strelkov, P., 2011. Mytilus trossulus in Northern Europe. Mar. Biol. 158 (4), 817-833, http://dx.doi.org/10.1007/s00227-010-1609-z.
  • [84] Valladares, F., Matesanz, S., Guilhaumon, F., Araujo, M. B., Balaguer, L., Benito-Garzon, M., Cornwell,W., Gianoli, E., van Kleunen, M., Naya, D. E., Nicotra, A. B., Poorter, H., Zavala, M. A., 2014. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol. Lett. 17 (11), 1351-1364, http://dx.doi.org/10.1111/ele.12348.
  • [85] Vuorinen, I., Hänninen, J., Rajasilta, M., Laine, P., Eklund, J., Montesino-Pouzols, F., Corona, F., Junker, K., Meier, H. E. M., Dippner, J. W., 2015. Scenario simulations of future salinity and ecological consequences in the Baltic Sea and adjacent North Sea areas — implications for environmental monitoring. Ecol. Indic. 50, 196-205, http://dx.doi.org/10.1016/j.ecolind.2014.10.019.
  • [86] Watson, J. R., Hays, C. G., Raimondi, P. T., Mitarai, S., Dong, C., McWilliams, J. C., Blanchette, C. A., Caselle, J. E., Siegel, D. A., 2011. Currents connecting communities: nearshore community similarity and ocean circulation. Ecology 92 (6), 1193-1200, http://dx.doi.org/10.1890/10-1436.1.
  • [87] Wenne, R., 2018. Single nucleotide polymorphism markers with applications in aquaculture and assessment of its impact on natural populations. Aquat. Living Resour. 31, Art No. 2, 17 pp., http://dx.doi.org/10.1051/alr/2017043.
  • [88] Wenne, R., Bach, L., Zbawicka, M., Strand, J., McDonald, J. H., 2016. A first report on coexistence and hybridization of Mytilus trossulus and M. edulis mussels in Greenland. Polar Biol. 39, 343-355, http://dx.doi.org/10.1007/s00300-015-1785-x.
  • [89] Wennerström, L., Laikre, L., Ryman, N., Utter, F. M., Ab Ghani, N. I., André, C., DeFaveri, J., Johansson, D., Kautsky, L., Merilä, J., Mikhailova, N., Pereyra, R., Sandström, A., Teacher, A. G. F., Wenne, R., Vasemägi, A., Zbawicka, M., Johannesson, K., Primmer, C. R., 2013. Genetic biodiversity in the Baltic Sea: species-specific patterns challenge management. Biodiv. Conserv. 22 (13-14), 3045-3065, http://dx.doi.org/10.1007/s10531-013-0570-9.
  • [90] Yaroslavtseva, L. M., Sergeeva, E. P., 2005. Adaptivity of the bivalve Mytilus trossulus larvae to short and long-term changes in water temperature and salinity. Rus. J. Mar. Biol. 32 (2), 82-87, http://dx.doi.org/10.1134/S1063074006020027.
  • [91] Zbawicka, M., Burzynski, A., Wenne, R., 2007. Complete sequences of mitochondrial genomes from the Baltic mussel Mytilus trossulus. Gene 406, 191-198, http://dx.doi.org/10.1016/j.gene.2007.10.003.
  • [92] Zbawicka, M., Drywa, A., Śmietanka, B., Wenne, R., 2012. Identification and validation of novel SNP markers in European populations of marine Mytilus mussels. Mar. Biol. 159 (6), 1347-1362, http://dx.doi.org/10.1007/s00227-012-1915-8.
  • [93] Zbawicka, M., Sańko, T., Strand, J., Wenne, R., 2014a. New SNP markers reveal largely concordant clinal variation across the hybrid zone between Mytilus spp. in the Baltic Sea. Aquat. Biol. 21 (21), 25-36, http://dx.doi.org/10.3354/ab00566.
  • [94] Zbawicka, M., Skibinski, D., Wenne, R., 2003a. Doubly uniparental transmission of mitochondrial DNA length variants in the mussel Mytilus trossulus. Mar. Biol. 142 (3), 455-460, http://dx.doi.org/10.1007/s00227-002-0969-4.
  • [95] Zbawicka, M., Trucco, M. I., Wenne, R., 2018. Single nucleotide polymorphisms in native South American Atlantic coast populations of smooth shelled mussels: hybridization with invasive European Mytilus galloprovincialis. Genet. Sel. Evol. 50, Art. No. 5, 14 pp., http://dx.doi.org/10.1186/s12711-018-0376-z.
  • [96] Zbawicka, M., Wenne, R., Burzynski, A., 2014b. Mitogenomics of recombinant mitochondrial genomes of Baltic Sea Mytilus mussels. Mol. Genet. Genomics: MGG 289 (6), 1275-1287, http://dx.doi.org/10.1007/s00438-014-0888-3.
  • [97] Zbawicka, M., Wenne, R., Skibinski, D.O.F., 2003b. Mitochondrial DNA variation in populations of the mussel Mytilus trossulus from the Southern Baltic. Hydrobiologia 499, 1-12, http://dx.doi.org/10.1023/A:1026356603105.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-133498b2-d3e4-4cb2-bb09-0f02dfb6b5f2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.