PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Palaeoenvironment of the middle Miocene wetlands at Drzewce, Konin region, central Poland

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Palynological analysis of the 1st mid-Polish lignite seam (MPLS-1) of the Drzewce deposit (Konin region, central Poland) was used as the data source for palaeoenvironmental and palaeoclimatic interpretations. Lignites of the 1st group developed in the middle Miocene, during and shortly after the last peak of the Mid-Miocene Climatic Optimum, over a large area of Poland, and they are the youngest of the main Neogene lignite seams in Poland. In the Konin region, these lignites have a relatively significant thickness (up to 20 m) and therefore they are (or were in the past) exploited in several open-pit mines. A total of 36 palynological samples from the 6.3-m-thick seam of the Drzewce opencast mine was studied in detail. Palynological analysis of the lignite seam indicates that the area was overgrown by palustrine wetland communities, similar in composition to modern pocosins. The most characteristic elements of them were shrubs in the Ericaceae family. The climate at that time was warm temperate and humid. The estimated mean annual temperature (MAT) for the lignite seam at Drzewce is 15.7–17.8 °C. Comparison with other palynofloras from the MPLS-1 shows that the climate during the formation of the group of seams was more or less homogenous across the entire Polish Lowlands. Sedimentological data and results of palynological studies (including NPPs) at Drzewce indicate that the palaeomires were relatively distant from the channels of the river system in the Konin Basin. The fossil fungal assemblage indicates dense vegetation on damp, swampy soils and the presence of small, shallow-water bodies, with a variable water level or even periodic reservoirs, existing only during the wet season or after floods. In small, flooded depressions, such as the pools in bogs, filamentous green algae occurred. The presence of zygospores of the desmids Desmidiaceaesporites cosmarioformis most probably indicates relatively nutrient-poor (ombrotrophic) conditions. Fluctuations in the frequency of individual plant taxa (including Sequoia and Sciadopitys) are likely to reflect changes in water level and trophic conditions.
Rocznik
Strony
201--218
Opis fizyczny
Bibliogr. 112 poz., fot., rys., tab., wykr.
Twórcy
  • W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Kraków, Poland
autor
  • Institute of Geology, Adam Mickiewicz University, Krygowskiego 12, 61-680 Poznań, Poland
  • W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Kraków, Poland
Bibliografia
  • 1. Bannister, J. M., Conran, J. G. & Lee, D. E., 2016. Life on the phylloplane: Eocene epiphyllous fungi from Pikopiko Fossil Forest, Southland, New Zealand. New Zealand Journal of Botany, 54: 412-432.
  • 2. Barnes, B. V, 1991. Deciduous forests of North America. In: Röhrig, E. & Ulrich, B. (eds), Ecosystems of the World. 7. Temperate Deciduous Forests. Elsevier, Amsterdam London- New York-Tokyo, pp. 219-344.
  • 3. Bouchal, J. M. & Denk, T., 2020. Low taxonomic resolution of papillate Cupressaceae pollen (former Taxodiaceae) impairs their applicability for palaeo-habitat reconstruction. Grana, 59: 71-93.
  • 4. Bruch, A. A., Uhl, D. & Mosbrugger, V., 2007. Miocene climate in Europe - Patterns and evolution. A first synthesis of NECLIME. Palaeogeography, Palaeoclimatology, Palaeoecology, 253: 1-7.
  • 5. Bruch, A. A., Utescher, T., Mosbrugger, V., Gabrielyan, I. & Ivanov, D. A., 2006. Late Miocene climate in the circum- Alpine realm - a quantitative analysis of terrestrial paleofloras. Palaeogeography, Palaeoclimatology, Palaeoecology, 238: 270-280.
  • 6. Chomiak, L., 2020. Variation of lignite ash in vertical and horizontal sections of mining walls in the Konin Lignite Mine, central Poland. Geology, Geophysics and Environment, 46: 17-28.
  • 7. Christensen, N. L., 2000. Vegetation of the southeastern Coastal Plain. In: Barbour, M. G. & Billings, W. D. (eds), North American Terrestrial Vegetation, 2nd Edition. Cambridge University Press, Cambridge, pp. 397-448.
  • 8. Ciuk, E. & Grabowska, I., 1991. Synthetic stratigraphic section of the Tertiary in the Lubstów brown coal deposit at Lubstów, Konin district. Biuletyn Państwowego Instytutu Geologicznego, 365: 47-72. [In Polish, with English summary.]
  • 9. Climate-Data., 2022. Climate: Konin. https://en.climate-data. org/europe/poland/greater-poland-voivodeship/konin-3071/ [February, 2022].
  • 10. Coesel, P. F. M. & Meesters, K. (J.), 2007. Desmids of the Lowlands: Mesotaeniaceae and Desmidiaceae of the European Lowlands. KNNV Publishing, Zeist, the Netherlands, 351 pp.
  • 11. Dadlez, R., Marek, S. & Pokorski, J. (eds), 2000. Mapa geologiczna Polski bez utworów kenozoiku w skali 1:1000000. Państwowy Instytut Geologiczny, Warszawa [In Polish.]
  • 12. Dix, N. J. & Webster, J., 1995. Fungal Ecology. Springer-Science + Business Media, B.V., 549 pp.
  • 13. Doktorowicz-Hrebnicka, J., 1960. Correlation of brown coal seams from the provinces of Poznań and Bydgoszcz. Biuletyn Instytutu Geologicznego, 157: 69-138. [In Polish, with English summary.]
  • 14. Dolezych, M. & Schneider, W., 2006. Inkohlte Hölzer und Cuticulae dispersae aus dem 2. Miozänen Flözhorizont im Tagebau Welzow (Lausitz) - Taxonomie und vergleichende feinstratigraphisch-fazielle Zuordnung. Zeitschrift für Geologische Wissenschaften, 34: 165-259.
  • 15. Dolezych, M. & Schneider, W., 2007. Taxonomie und Taphonomie von Koniferenhölzern und Cuticulae dispersae im 2. Lausitzer Flözhorizont (Miozän) des Senftenberger Reviers. PalaeontographicaAbteilungB, 276: 1-95.
  • 16. Dyjor, S. & Sadowska, A., 1977. Problem of the age and correlation of Upper Miocene brown coal seams in the Western Poland. Geologia Sudetica, 12: 121-134. [In Polish, with English summary.]
  • 17. Fang, J., Wang, Z. & Tang, Z., 2011. Atlas of Woody Plants in China: Distribution and Climate. Higher Education Press, Beijing, 2000 pp.
  • 18. Figueiral, I., Mosbrugger, V, Rowe, N. P., Ashraf, A. R., Utescher, T. & Jones, T. P., 1999. The Miocene peat-forming vegetation of northwestern Germany: an analysis of wood remains and comparison with previous palynological interpretations. Review of Palaeobotany andPalynology, 104: 239-266.
  • 19. Goh, T. K. & Hyde, K. D., 1996. Biodiversity of freshwater fungi. Journal of Industrial Microbiology and Biotechnology, 17: 328-345.
  • 20. Grabowska, I. & Słodkowska, B., 1993. Katalog profili osadów trzeciorzędowych opracowanych palinologicznie. PIG, Warszawa, 80 pp. [In Polish.]
  • 21. Grimm, G. W., Bouchal, J. M., Denk, T. & Potts, A., 2016. Fables and foibles: a critical analysis of the Palaeoflora database and the Coexistence Approach for palaeoclimate reconstruction. Review of Palaeobotany and Palynology, 233: 611-622.
  • 22. Grimm, G. W. & Denk, T., 2012. Reliability and resolution of the coexistence approach - A revalidation using modern-day data. Review of Palaeobotany and Palynology, 172: 33-47.
  • 23. Grimm, G. W. & Potts, A., 2016. Fallacies and fantasies: the theoretical underpinnings of the coexistence approach for palaeoclimate reconstruction. Climate of the Past, 12: 611-622.
  • 24. Holdgate, G., Wallace, M., O’Connor, M., Korasidis, V. & Lieven, U., 2016. The origin of lithotype cycles in Oligo-Miocene brown coals from Australia and Germany. International Journal of Coal Geology, 12: 327-347.
  • 25. Hunger, R., 1953. Mikrobotanisch-stratigraphische Untersuchungen der Braunkohlen der südlichen Oberlausitz und die Pollenanalyse als Mittel zur Deutung der Flözgenese. FreiderbergForschungshefte, Reihe C, H. 8: 1-38.
  • 26. Ivanov, D. & Worobiec, E., 2017. Middle Miocene (Badenian) vegetation and climate dynamics in Bulgaria and Poland based on pollen data. Palaeogeography, Palaeoclimatology, Palaeoecology, 467: 83-94.
  • 27. Jones, T. P., Fortier, S. M., Mosbrugger, V., Roessler, J., Utescher, T. & Ashraf, A. R., 1997. 13C/12C ratio double cyclicity in a Miocene browncoal: Isotopic signals and orbital forcing. Terra Nova, 9: 19-23.
  • 28. Kadłubowska, J. Z., 1984. Süßwasserflora von Mitteleuropa. Band 16: Chlorophyta VIII-Conjugatophyceae I (Zygnemales). Gustav Fischer Verlag, Stuttgart, 532 pp.
  • 29. Kalgutkar, R. M. & McIntyre, D. J., 1991. Helicosporous fungi and Early Eocene pollen, Eureka Sound Group, Axel Heiberg Island, Northwest Territories. Canadian Journal of Earth Sciences, 28: 364-371.
  • 30. Kalgutkar, R. M. & Sigler, L., 1995. Some fossil fungal form-taxa from the Maastrichtian and Palaeogene ages. Mycological Research, 99: 513-522.
  • 31. Kasiński, J. R., Piwocki, M., Swadowska, E. & Ziembińska-Tworzydło, M., 2010. Lignite of the Polish Lowlands Miocene: Characteristics on a base of selected profiles. Biuletyn Państwowego Instytutu Geologicznego, 439: 99153. [In Polish, with English summary.]
  • 32. Kasiński, J. R. & Słodkowska, B., 2016. Factors controlling Cenozoic anthracogenesis in the Polish Lowlands. Geological Quarterly, 60: 959-974.
  • 33. Kędzior, A., Widera, M. & Zieliński, T., 2021. Ancient and modern anastomosing rivers: insights from sedimentological and geomorphological case studies of the Triassic, Neogene and Holocene of Poland. Geological Quarterly, 65: 54.
  • 34. Kohlman-Adamska, A., 1993. Pollen analysis of the Neogene deposits from the Wyrzysk region, North-Western Poland. Acta Palaeobotanica, 33: 91-298.
  • 35. Kottek, M., Grieser, J., Beck, C., Rudolf, B. & Rubel, F., 2006. World Map of Köppen Geiger Climate Classification updated. Meteorologische Zeitschrift, 15: 259-263.
  • 36. Kovar-Eder, J., Kvaček, Z. & Meller, B., 2001. Comparing Early to Middle Miocene floras and probable vegetation types of Oberdorf N Voitsberg (Austria), Bohemia (Czech Republic), and Wackersdorf (Germany). Review of Palaeobotany and Palynology, 114: 83-125.
  • 37. Kremp, G., 1949. Pollenanalitische Untersuchungen des miozanen Braunkohlenlagers von Konin an der Warthe. Palaeontographica B, 90: 53-93.
  • 38. Krutzsch, W. & Pacltová, B., 1990. Die Phytoplankton - Mikroflora aus den Pliozänen Süsswasserablagerungen des Cheb-Beckens (Westböhmen, ČSFR). Acta Universitatis Carolinae - Geologica, 4: 345-420.
  • 39. Kus, J., Dolezych, M., Schneider, W., Hofmann, T. & Visiné Rajczi, E., 2020. Coal petrological and xylotomical characterization of Miocene lignites and in-situ fossil tree stumps and trunks from Lusatia region, Germany: palaeoenvironment and taphonomy assessment. International Journal of Coal Geology, 217, 103283.
  • 40. Kwiecińska, B. & Wagner, M., 2001. Application of Reflectance in Natural and Technological Classification of Brown Coal (Lignite). Wydawnictwo Akademii Górniczo-Hutniczej, Kraków, 53 pp. [In Polish, with English summary.]
  • 41. Mai, D. H., 1981. Entwicklung und klimatische Differenzierung der Laubwaldflora Mitteleuropas im Tertiär. Flora, 171: 525-582.
  • 42. Mamczar, J., 1960. Standard section of the Middle Miocene of Central Poland. Biuletyn Instytutu Geologicznego, 157: 1368. [In Polish, with English summary.]
  • 43. Mamczar, J., 1961. Standard spore-pollen section of the Upper Miocene brown coal in Central Poland - Rogóźno brown coal deposit. Biuletyn Instytutu Geologicznego, 158: 305-323. [In Polish, with English summary.]
  • 44. Markovskaja, S., 2009. Fungi inhabiting submerged forest litter in a temperate stream (South Eastern Lithuania). Botanica Lithuanica, 15: 105-116.
  • 45. Markovskaja, S., 2012. Aero-aquatic fungi colonizing decaying leaves in woodland swampy pools of Aukštadvaris Regional Park (Lithuania). Botanica Lithuanica, 18: 123-132.
  • 46. Moore, P. D., Webb, J. A. & Collinson, M. E., 1991. Pollen Analysis. Blackwell, Oxford, 216 pp.
  • 47. Mosbrugger, V., Gee, C. T., Belz, G. & Ashraf, A. R., 1994. Threedimensional reconstruction of an in-situ Miocene peat forest from the Lower Rhine Embayment, northwestern Germany - new methods in palaeovegetation analysis. Palaeogeography, Palaeoclimatology, Palaeoecology, 110: 295-317.
  • 48. Mosbrugger, V., Utescher, T. & Dilcher, D. L., 2005. Cenozoic continental climatic evolution of Central Europe. Proceedings of the National Academy of Sciences of the United States of America, 102: 14964-14969.
  • 49. Nalepka, D. & Walanus, A., 2003. Data processing in pollen analysis. Acta Palaeobotanica, 43: 125-134.
  • 50. Ohngemach, D. & Straka, H., 1982. Pollenanalytischer Nachweis einer mexikanischen Pinus-Art mit Hilfe ihres Parasiten. Abhandlungen des Naturwissenschaftlichen Vereins zu Bremen, 39: 397-403.
  • 51. Piwocki, M., 1998. An outline of the palaeogeographic and palaeoclimatic developments. In: Ważyńska, H. (ed.), Palynology and Palaeogeography of the Neogene in the Polish Lowlands. Prace Państwowego Instytutu Geologicznego, 160: 8-12.
  • 52. Piwocki, M. & Ziembińska-Tworzydło, M., 1997. Neogene of the Polish Lowlands - lithostratigraphy and pollen-spore zones. Geological Quarterly, 41: 21-40.
  • 53. Prader, S., Kotthoff, U., McCarthy, F. M. G., Schmiedl, G., Donders, T. H. & Greenwood, D. R., 2017. Vegetation and climate development of the New Jersey hinterland during the late Middle Miocene (IODP Expedition 313 Site M0027). Palaeogeography, Palaeoclimatology, Palaeoecology, 485: 854-868.
  • 54. Raniecka-Bobrowska, J., 1970. Stratigraphy of Late Tertiary in Poland on the basis of palaeobotanical research. Kwartalnik Geologiczny, 14: 728-753. [In Polish, with English summary.]
  • 55. Richardson, C. J., 2003. Pocosins: hydrologically isolated or integrated wetlands on the landscape? Wetlands, 23: 563-576.
  • 56. Romero, I. C., Nuñez Otaño, N. B., Gibson, M. E., Spears, T. M., Fairchild, C. J., Tarlton, L., Jones, S., Belkin, H. E., Warny, S., Pound, M. J. & O’Keefe, J. M. K., 2021. First record of fungal diversity in the tropical and warm-temperate Middle Miocene Climate Optimum forests of Eurasia. Frontiers in Forests and Global Change, 4: 768405.
  • 57. Sadowska, A., 1977. Vegetation and stratigraphy of Upper Miocene coal seam of the South-Western Poland. Acta Palaeobotanica, 18: 87-122. [In Polish, with English summary.]
  • 58. Sadowska, A. & Giża, B., 1991. The flora and age of the brown coal from Pątnów. Acta Palaeobotanica, 31: 201-214. [In Polish, with English summary.]
  • 59. Saxena, R. K., Wijayawardene, N. N., Dai, D. Q., Hyde, K. D. & Kirk, P. M., 2021. Diversity in fossil fungal spores. Mycosphere, 12: 670-874.
  • 60. Schneider, W., 1992. Floral successions in Miocene swamps and bogs of Central Europe. Zeitschrift für Geologische Wissenschaften, 20: 555-570.
  • 61. Scott, L., 1992. Environmental implications and origin of microscopic Pseudoschizaea Thiergart and Frantz ex R. Potonié emend. in sediments. Journal of Biogeography, 19: 349-354.
  • 62. Sharitz, R. R. & Gibbons, J. W., 1982. The Ecology of Southeastern Shrub Bogs (Pocosins) and Carolina Bays: a Community Profile. U.S. Fish and Wildlife Service, Division of Biological Services, Washington, D.C., 93 pp.
  • 63. Shumilovskikh, L. S., Schlütz, F., Achterberg, I., Bauerochse, A. & Leuschner, H. H., 2015. Non-pollen palynomorphs from mid-Holocene peat of the raised bog Borsteler Moor (Lower Saxony, Germany). Studia Quaternaria, 32: 5-18.
  • 64. Słodkowska, B., 1998. Palynological characteristics of the Neogene brown coal seams. In: Ważyńska, H. (ed.), Palynology and Palaeogeography of the Neogene in the Polish Lowlands. Prace Państwowego Instytutu Geologicznego, 160: 28-33.
  • 65. Słodkowska, B. & Widera, M., 2021. Vegetation response to environmental changes based on palynological research on the Middle Miocene lignite at the Jóźwin IIB open-cast mine (Konin region, central Poland). Annales Societatis Geologorum Poloniae, 91: 149-166.
  • 66. Sri-Indrasutdhi, V., Tsui, C. K., Chuaseeharonnachai, C., Yamaguchi, K., Suetrong, S., Okane, I., Nakagiri, A. & Boonyuen, N., 2015. Helicocentralis hyalina gen. et sp. no v., an aero-aquatic helicosporous fungus (Leotiomycetes, Ascomycota) in Thailand. Mycological Progress, 14: 1-12.
  • 67. Stuchlik, L., Ziembińska-Tworzydło, M., Kohlman-Adamska, A., Grabowska, I., Słodkowska, B., Ważyńska, H. & Sadowska, A., 2009. Atlas of Pollen and Spores of the Polish Neogene. Volume 3 - Angiosperms (1). W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków, 233 pp.
  • 68. Stuchlik, L., Ziembińska-Tworzydło, M., Kohlman-Adamska, A., Grabowska, I., Słodkowska, B., Worobiec, E. & Durska, E., 2014. Atlas of Pollen and Spores of the Polish Neogene. Volume 4 - Angiosperms (2). W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków, 466 pp.
  • 69. Stuchlik, L., Ziembińska-Tworzydło, M., Kohlman-Adamska, A., Grabowska, I., Ważyńska, H. & Sadowska, A., 2002. Atlas of Pollen and Spores of the Polish Neogene. Volume 2 - Gymnosperms. W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków, 237 pp.
  • 70. Stuchlik, L., Ziembińska-Tworzydło, M., Kohlman-Adamska, A., Grabowska, I., Ważyńska, H., Słodkowska, B. & Sadowska, A., 2001. Atlas of Pollen and Spores of the Polish Neogene. Volume 1 - Spores. W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków, 158 pp.
  • 71. Szulc, J. & Worobiec, E., 2012. Neogene karst sinkhole and its deposits from Górażdże Quarry, Upper Silesia - archive for palaeoenvironmental reconstructions. Annales Societatis Geologorum Poloniae, 82: 371-385.
  • 72. Utescher, T., Ashraf, A. R., Dreist, A., Dybkjsr, K., Mosbrugger, V., Pross, J. & Wilde, V., 2012. Variability of Neogene continental climates in Northwest Europe - a detailed study based on microfloras. Turkish Journal of Earth Sciences, 21: 289-314.
  • 73. Utescher, T., Ashraf, A. R., Kern, A. K. & Mosbrugger, V., 2021. Diversity patterns in microfloras recovered from Miocene brown coals of the lower Rhine Basin reveal distinct coupling of the structure of the peat-forming vegetation and continental climate variability. Geological Journal, 56: 768-785.
  • 74. Utescher, T., Bruch, A. A., Erdei, B., Franęois, L., Ivanov, D., Jacques, F. M. B., Kern, A. K., Liu, Y-S. (C.), Mosbrugger, V. & Spicer, R. A., 2014. The coexistence approach - theoretical background and practical considerations of using plant fossils for climate quantification. Palaeogeography, Palaeoclimatology, Palaeoecology, 410: 58-73.
  • 75. Utescher, T. & Mosbrugger, V., 2015. The Palaeoflora Database. http://www.palaeoflora.de/ [December, 2021].
  • 76. Utescher, T., Mosbrugger, V., Ivanov, D. & Dilcher, D. L., 2009. Present-day climatic equivalents of European Cenozoic climates. Earth and Planetary Science Letters, 284: 544-552.
  • 77. van Geel, B., 1976. Fossil spores of Zygnemataceae in ditches of a pre-historic settlement in Hoogkarspel (The Netherlands). Review of Palaeobotany and Palynology, 22: 337-344.
  • 78. van Geel, B., 1978. A palaeoecological study of Holocene peat bog sections in Germany and the Netherlands, based on the analysis of pollen, spores and macro-and microscopic remains of fungi, algae, cormophytes and animals. Review of Palaeobotany and Palynology, 25: 1-120.
  • 79. van Geel, B. & Grenfell, H. R., 1996. Spores of Zygnemataceae. In: Jansonius, J. & McGregor, D. C. (eds), Palynology: Principles and Applications. 1. American Association of Stratigraphic Palynologists Foundation, pp. 173-179.
  • 80. Voglmayr, H., 1997. Two new aero-aquatic species of the hyphomycete genus Helicodendron from Austria. Plant Systematics and Evolution, 205: 185-193.
  • 81. Wacnik, A. & Worobiec, E., 2001. Pollen analysis of the Middle Miocene profile from Legnica, southwestern Poland. Acta Palaeobotanica, 41: 3-13.
  • 82. Weakley, A. S. & Schafale, M. P., 1991. Classification of pocosins of the Carolina Coastal Plain. Wetlands, 11, Special Issue: 355-375.
  • 83. Webster, J. & Weber, R. W. S., 2007. Introduction to Fungi. Third edition. Cambridge University Press, 841 pp.
  • 84. Westerhold, T., Marwan, N., Drury, A. J., Liebrand, D., Agnini, C., Anagnostou, E., Barnet, J. S. K., et al., 2020. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science, 369: 1383-1387.
  • 85. Widera, M., 2007. Lithostratigraphy and Palaeotectonics of the sub-Pleistocene Cenozoic of Wielkopolska. Adam Mickiewicz University Press, Poznań, 224 pp. [In Polish, with English summary.]
  • 86. Widera, M., 2016. Genetic classification of Polish lignite deposits: A review. International Journal of Coal Geology, 158: 107-118.
  • 87. Widera, M., 2021. Geologia polskich złóż węgla brunatnego. Wydawnictwo Naukowe Bogucki, Poznań, 180 pp. [In Polish.]
  • 88. Widera, M., Bechtel, A., Chomiak, L., Maciaszek, P., Słodkowska, B., Wachocki, R., Worobiec, E., Worobiec, G. & Zieliński, T., 2021a. Palaeoenvironmental reconstruction of the Konin Basin (central Poland) during lignite accumulation linked to the mid-Miocene climate optimum. Palaeogeography, Palaeoclimatology, Palaeoecology, 568: 110307.
  • 89. Widera, M., Chomiak, L. & Zieliński, T., 2019. Sedimentary facies, processes and paleochannel pattern of an anastomosing river system: an example from the Upper Neogene of Central Poland. Journal of Sedimentary Research, 89: 487-507.
  • 90. Widera, M. & Kita, A., 2007. Paleogene marginal marine sedimentation in central-western Poland. Geological Quarterly, 51: 79-90.
  • 91. Widera, M., Kowalska, E. & Fortuna, M., 2017. A Miocene anastomosing river system in the area of Konin Lignite Mine, central Poland. Annales Societatis Geologorum Poloniae, 87: 157-168.
  • 92. Widera, M., Zieliński, T., Chomiak, L., Maciaszek, P., Wachocki, R., Bechtel, A., Słodkowska, B., Worobiec, E. & Worobiec, G., 2021b. Tectonic-climatic interactions during changes of depositional environments in the Carpathian foreland: An example from the Neogene of central Poland. Acta Geologica Polonica, 71: 519-542.
  • 93. Wilhite, L. P. & Toliver, J. R., 1990. Taxodium distichum (L.) Rich., Baldcypress. In: Burns, R. M. & Honkala, B. H. (technical coordinators), Silvics of North America: 1. Conifers. Agriculture Handbook 654. U.S. Department of Agriculture, Forest Service, Washington, DC, USA, pp. 563-572.
  • 94. Worobiec, E., 2009. Middle Miocene palynoflora of the Legnica lignite deposit complex, Lower Silesia, Poland. Acta Palaeobotanica, 49: 5-133.
  • 95. Worobiec, E., 2010. Late Miocene freshwater phytoplankton from Józefina (Poland). Micropaleontology, 56: 517-537.
  • 96. Worobiec, E., 2011. Middle Miocene aquatic and wetland vegetation of the paleosinkhole at Tarnów Opolski, SW Poland. Journal of Paleolimnology, 45: 311-322.
  • 97. Worobiec, E., 2014a. Fossil zygospores of Zygnemataceae and other microremains of freshwater algae from two Miocene palaeosinkholes in the Opole region, SW Poland. Acta Palaeobotanica, 54: 113-157.
  • 98. Worobiec, E., 2014b. The palynology of late Miocene sinkhole deposits from Upper Silesia, Poland. Review of Palaeobotany and Palynology, 211: 66-77.
  • 99. Worobiec, E. & Szulc, J., 2010. A Middle Miocene palynoflora from sinkhole deposits from Upper Silesia, Poland and its palaeoenvironmental context. Review of Palaeobotany and Palynology, 163: 1-10.
  • 100. Worobiec, E., Widera, M., Worobiec, G. & Kurdziel, B., 2021. Middle Miocene palynoflora from the Adamów lignite deposit, central Poland. Palynology, 45: 59-71.
  • 101. Worobiec, E. & Worobiec, G., 2016. Miocene palynoflora from the KRAM-P 218 leaf assemblage from the Bełchatów Lignite Mine (Central Poland). Acta Palaeobotanica, 56: 499-517.
  • 102. Worobiec, E., Worobiec, G. & Kasiński, J. R., 2022a. Decline of Neogene lignite formation as a result of vegetation and climate changes reflected in the middle Miocene palynoflora from the Ruja lignite deposit, SW Poland. Review of Palaeobotany and Palynology, 298, 104593.
  • 103. Worobiec, G. & Worobiec, E., 2017. Epiphyllous fungi from Miocene deposits of the Bełchatów Lignite Mine (Central Poland). Mycosphere, 8: 1003-1013.
  • 104. Worobiec, G., Worobiec, E. & Kasiński, J., 2008. Plant assemblages of the drill cores from the Neogene Ruja lignite deposit near Legnica (Lower Silesia, Poland). Acta Palaeobotanica, 48: 191-275.
  • 105. Worobiec, G., Worobiec, E. & Liu, Y. C., 2018. Fungal remains from late Neogene deposits at the Gray Fossil Site, Tennessee, USA. Mycosphere, 9: 1014-1024.
  • 106. Worobiec, G., Worobiec, E. & Widera, M., 2022b. Middle Miocene wetland fungi from the Adamów Lignite Mine, central Poland. Historical Biology, 34: 841-856.
  • 107. Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K., 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292: 686-693.
  • 108. Zhao, G. Z., Liu, X. Z. & Wu, W. P., 2007. Helicosporous hyphomycetes from China. Fungal Diversity, 26: 313-524.
  • 109. Zieliński, T. & Widera, M., 2020. Anastomosing-to-meandering transitional river in sedimentary record: A case study from the Neogene of central Poland. Sedimentary Geology, 404: 105677.
  • 110. Ziembińska, M. & Niklewski, J., 1966. Stratigraphy and correlation of brown coal beds in the Ścinawa deposits on the basis of spore-pollen analysis. Biuletyn Instytutu Geologicznego, 202: 27-48. [In Polish, with English summary.]
  • 111. Ziembińska-Tworzydło, M., 1974. Palynological characteristics of the Neogene of Western Poland. Acta Palaeontologica Polonica, 19: 309-467.
  • 112. Ziembińska-Tworzydło, M. & Ważyńska, H., 1981. A palynological subdivision of the Neogene in Western Poland. Bulletin of the Polish Academy of Sciences. Earth Sciences, 29: 29-43.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-133198bc-eb5d-4e0d-b178-00460859ed8b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.