PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Precipitation of calcium carbonate in a shallow polymictic coastal lake : assessing the role of primary production, organic matter degradation and sediment mixing

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, the genesis of carbonates in a shallow, polymictic and eutrophic coastal lake (Lake Sarbsko, Poland) is deciphered. Emphasis is placed upon the relationship between carbonate sedimentation and microbial degradation of organic matter, as well as on vertical mixing of sediments. The cycling of carbonates in the lake was investigated through the analysis of lake water chemistry (pH, Ca2+, Mg2+, alkalinity, SIcalc) and the stable carbon isotope composition of dissolved inorganic carbon and sedimentary calcite. It is shown that the calcite is precipitated within a relatively short time owing to the coincidence between the activity of photosynthesizing phytoplankton, the microbial decomposition of organic matter, and the physical mixing of lake deposits. In turn, the precipitated calcite is prone to dissolution within the sediments. The data presented in this paper can be applied to explain the processes affecting the carbonate saturation in freshwater systems and to interpret δ13C signatures in the sediments of shallow lakes.
Rocznik
Strony
86--99
Opis fizyczny
Bibliogr. 53 poz., rys., tab.
Twórcy
autor
  • Department of Quaternary Geology and Paleogeography, Adam Mickiewicz University, ul. Dzięgielowa 27, 61-680 Poznań, Poland
Bibliografia
  • [1]. Balmer M.B. & Downing J.A. (2011). Carbon dioxide concentrations in eutrophic lakes: undersaturation imples atmospheric uptake. Inl. Wat. 1: 125-132. DOI: 10.5268/IW- 1.2.366.
  • [2]. Baumgartner, L.K., Reid, R.P., Dupraz, C., Decho, A.W., Buckley, D.H. et al. (2006). Sulfate reducing bacteria in microbial mats: Changing paradigms, new discoveries. Sed. Geol. 185(3-4): 131-145. DOI: 10.1016/j.sedgeo.2005.12.008.
  • [3]. Bechtel, A., Woszczyk, M., Reischenbacher, D., Sachsenhofer, R.F., Gratzer, R. et al. (2007). Biomarkers and geochemical indicators of Holocene environmental changes in coastal Lake Sarbsko (Poland). Org. Geochem. 38: 1112-1131. DOI: 10.1016/j.orggeochem.2007.02.009.
  • [4]. Beresić, J., Horvatincic, N., & Roller-Lutz, Z. (2011). Spatial and seasonal variations in the stable C isotope composition of dissolved inorganic carbon and in physico-chemical water parameters in the Plitvice Lake system. Isot. Envir. Health Stud. 47(3): 316-329. DOI: 10.1080/10256016.2011.596625.
  • [5]. Berner, R.A. (1971). Principles of chemical sedimentology. New York: McGraw-Hill Book Company.
  • [6]. Cieśliński, R. (2013). Short-term changes in specific conductivity in Polish coastal lakes (Baltic Sea basin). Oceanologia 55(3): 639-661. DOI: 10.5697/oc.55-3.639.
  • [7]. Cole, J.J. & Praire, Y.T. (2009). Dissolved CO2. In G.E. Likens (Ed.) Encyclopedia of inland waters. Vol. 2 (pp. 30-34). Oxford, Elsevier.
  • [8]. de Jonge, VN. & Villerius, L.A. (1989). Possible role of carbonate dissolution in estuarine phosphate dynamics. Limnol. Oceanogr. 34(2): 332-340. DOI: 10.4319/lo.1989.34.2.0332.
  • [9]. Dean, W. (1999). The carbon cycle and biogeochemical dynamics in lake sediments. Jour. Paleolim. 21: 375-393. DOI: 10.1023/A:1008066118210.
  • [10]. Dittrich M. & Koschel, R. (2002). Interactions between calcite precipitation (natural and artificial) and phosphorus cycle in the hardwater lake. Hydrobiologia 469: 49-57. DOI: 10.1023/A:1015571410442.
  • [11]. Dupraz, C., Reid, R.P., Braissant, O., Decho, A.W., Norman, R.S. & Visscher, P.T., (2009). Processes of carbonate precipitation in modern microbial mats. Earth Sci. Rev. 96(3): 141-162. DOI: 10.1016/j.earscirev.2008.10.005.
  • [12]. Eby, G.N. (2004). Principles of environmental geochemistry. Belmont: Brooks/Cole Cenage Learning.
  • [13]. Eugster, W., Kling, G., Jonas, T., McFadden, J.P., Wüest, A. et al. (2003). CO2 exchange between air and water in an Arctic Alaskan and midlatitude Swiss lake: importance of convective mixing. Jour. Geophys. Res. 108(12), ACL7-1 - ACL7-19. DOI: 10.1029/2002JD002653.
  • [14]. Gruber, N., Wehrli, B. & Wüest, A. (2000). The role of biogeochemical cycling for the formation and preservation of varved sediments (Switzerland). Jour. Paleolim. 24: 277¬291. DOI: 10.1023/A:1008195604287.
  • [15]. Gu, B. & Schelske, C.L. (1996). Temporal and spatial variations in phytoplankton carbon isotopes in a polymictic subtropical lake. Jour. Plankt. Res. 18(11): 2081-2092. DOI: 10.1093/plankt/18.11.2081.
  • [16]. Gu, B., Schelske, C.L. & Hodell D.A. (2004). Extreme 13C enrichments in a shallow hypereutrophic lake: Implications for carbon cycling. Limnol. Oceanogr. 49(4): 1152-1159. DOI: 10.4319/lo.2004.49.4.1152.
  • [17]. Heiri, O., Lotter, A.F. & Lemcke, G. (2001). Loss on ignition as a method for estimating organic and carbonate content in sediments, reproducibility and comparability of results. Jour. Paleolim. 25: 101-110. DOI: 10.1023/A:1008119611481.
  • [18]. Herczeg, A.L. & Fairbanks, R.G. (1987). Anomalous carbon isotope fractionation between atmospheric CO2 and dissolved inorganic carbon induced by intense photosynthesis. Geochim. Cosmochim. Acta 51: 895-899. DOI: 10.1016/0016- 7037(87)90102-5.
  • [19]. Herczeg, A.L., Leaney, F.W., Dighton, J.C., Lamontagne, S., Schiff, S.L. et al. (2003). A modern isotope record of changes in water and carbon budgets ina agroundwater-fed lake: Blue Lake, South Australia. Limnol. Oceanogr. 48(6): 2093-2105. DOI: 10.4319/lo.2003.48.6.2093.
  • [20]. Hodell, D.A., Schelske, C.L., Fahnenstiel, G.L. & Robbins, L.L. (1998). Biologically induced calcite and its isotopic composition in Lake Ontario. Limnol. Oceanogr. 43(2): 187¬199. DOI: 10.4319/lo.1998.43.2.0187.
  • [21]. Hollander, D.J. & McKenzie, J.A. (1991). CO2 control on carbon-isotope fractionation during aqueous photosynthesis: A paleo-pCO2 barometer. Geology 19: 929-932. DOI: 10.1130/0091-7613(1991)019<0929:CCOCIF>2.3.CO.
  • [22]. Jahnke, R.A. & Jahnke, D.B. (2004). Calcium carbonate dissolution in deep sea sediments: reconciling microelectrode, pore water and benthic flux chamber results. Geochim. Cosmochim. Acta 68(1): 47-59. DOI: 10.1016/ S0016-7037(03)00260-6.
  • [23]. Jędrysek, M.O. (2005). Sulphate reduction - methane oxidation: a potential role of this process in the origin of C isotope environmental record in freshwater carbonates. Pol. Geol. Inst. Spec. Papers. 16: 18-34.
  • [24]. Jonsson, A., Àberg, J., Lindroth, A. & Jansson, M. (2008). Gas transfer rate and CO2 flux between un unproductive lake and the atmosphere in northern Sweden. Jour. Geophys. Res.: Biogeosci. 113(4): G04006. DOI: 10.1029/2008JG000688.
  • [25]. Ju, J., Zhu, L., Wang, J., Xie, M., Zhen, X. et al. (2010). Water and sediment chemistry of Lake Pumayum Co, South Tibet: implication for interpreting sediment carbonate. Jour. Paleolim., 43: 463-474. DOI: 10.1007/s10933-009-9343-6.
  • [26]. Kelts, K. & Hsu, K.J. (1978). Freshwater carbonate sedimentation. In A. Lerman (Ed.) Lakes Chemistry Geology Physics (pp. 295-324). New York, Heidelberg, Berlin: Springer-Verlag.
  • [27]. Lebeau, O., Busigny, V., Chaduteau, C. & Ader, M. (2014). Organic matter removal for the analysis of carbon and oxygen isotope compositions of siderite. Chem. Geol. 372:54-61. http://dx.doi.org/10.1016/jxhemgeo.2014.02.020.
  • [28]. Leng, M.J. & Marshall, J.D. (2004). Palaeoclimate interpretation of stable isotope data from lake sediments. Quat. Sci. Rev. 23: 811-831. DOI: 10.1016/j.quascirev.2003.06.012.
  • [29]. Müller, G., Irion, G. & Förstner, U. (1972) Formation and diagenesis of inorganic Ca-Mg carbonates in the lacustrine environment. Naturwissenschaften, 59(4): 158-164. DOI: 10.1007/BF00637354.
  • [30]. Müller, B., Wang, Y., Dittrich, M. & Wehrli, B. (2003). Influence of organic carbon decomposition on calcite dissolution in surficial sediments of a freshwater lake. Wat. Res.. 37: 4524¬4532. DOI: 10.1016/S0043-1354(03)00381-6.
  • [31]. Müller, B., Wang, Y. & Wehrli, B. (2006). Cycling of calcite in hard water lakes of different trophic states. Limnol. Oceanogr. 51(4): 1678-1688. DOI: 10.4319/lo.2006.51.4.1678.
  • [32]. Myrbo, A. & Shapley M.D. (2006). Sesasonal water-column dynamics of dissolved inorganic carbon ateble isotopic compositions (013CDIC) in small hardwater lakes in Minnesota and Montana. Geochim. Cosmoch. Acta 70, 2699¬2714. DOI: 10.1016/j.gca.2006.02.010.
  • [33]. Osadczuk, A. (1999). An estuary or a lagoon? Quat. Sci. Pol. Sp. Issue 175-186.
  • [34]. Pełechaty, M., Pukacz, A., Apolinarska, K., Pełechata, A. & Siepak, M. (2013). The significance of Chara vegetation in the precipitation of lacustrine calcium carbonate. Sedimentology 60: 1017-1035. DOI: 10.1111/sed.12020.
  • [35]. Piotrowska, N. & Hałas, S. (2009). Zmiany składu izotopowego węgla i tlenu w jeziorze Wigry jako źródło informacji paleoklimatycznych. In J. Rutkowski & L. Krzysztofiak (Eds.) Jezioro Wigry. Historia jeziora w świetle badań geologicznych i paleoekologicznych (pp. 157-167). Suwałki: Stowarzyszenie „Człowiek i Przyroda”.
  • [36]. Pustelnikovas, O. (1998). Geochemistry of sediments of the Cooronian Lagoon (Baltic Sea). Vilnius, Institute of Geography.
  • [37]. Ramisch, F., Dittrich, M., Mattenberger, Ch., Wehrli, B. & Wüest, A. (1999). Calcite dissolution in two deep eutrophic lakes. Geochim. Cosmochim. Acta 63(19/20): 3349-3356. DOI: 10.1016/S0016-7037(99)00256-2.
  • [38]. Shoemaker, J.K. & Schrag, D.P. (2010). Subsurface characterization of methane production and oxidation from a New Hampshire wetland. Geobiology 8: 234-243. DOI: 10.1111/j.1472-4669.2010.00239.x.
  • [39]. Soetaert, K., Hofmann, A.F., Middleburg, J.J., Meysman, FJ.R. & Greenwood, J. (2007). The effect of biogochemical processes on pH. Mar. Chem. 105: 30-51. DOI: 10.1016/j. marchem.2006.12.012.
  • [40]. Stockhecke, M., Anselmetti, F.S., Meydan, A.F., Odermatt, D. & Srturm, M. (2012). The annual particle cycle in Lake Van (Turkey). Palaeogeog., Palaeoclim., Palaeoecol. 333-334, 148¬159. DOI: 10.1016/j.palaeo.2012.03.022.
  • [41]. Teranes, J.L., McKenzie, J.A., Lotter, A. & Sturm, M. (1999). Stable isotope response to lake eutrophication: calibration of a hogh-resolution lacustrine sequence from Baldeggersee, Switzerland. Limnol. Oceanogr. 44(2): 320-333. DOI:10.4319/lo.1999.44.2.0320.
  • [42]. Tylmann, W. (2007). Pobór i opróbowanie powierzchniowych, silnie uwodnionych osadów jeziornych o nienaruszonej strukturze - uwagi metodyczne i stosowany sprzęt. Przegl. Geol. 55: 151-156.
  • [43]. Tylmann, W., Szpakowska, K., Ohlendorf, Ch., Woszczyk, M. & Zolitschka, B. (2012). Conditions for deposition of annually laminated sediments in small meromictic lakes: a case study of Lake Suminko (northern Poland). Jour. Paleolim. 47(1):55-70. DOI 10.1007/s10933-011-9548-3.
  • [44]. Uścinowicz, S., & Zachowicz, J. (1996). Geochemical atlas of the Vistula Lagoon. Warszawa, Wydawnictwo Kartograficzne PAE.
  • [45]. Valero-Garcés, B., Morellón, M., Moreno, A., Corella, J.P., Martin-Puertas, C., Barreiro, F., Pérez, A., Giralt, S. & Mata- Campo, M.P. (2014)._Lacustrine carbonates of Iberian Karst Lakes: Sources, processes and depositional environments. Sed. Geol. 299: 1-29. DOI: 10.1016/j.sedgeo.2013.10.007.
  • [46]. Wachniew, P. & Różański, K. (1997). Carbon budget of a mid- lattitude, groundwater-controlled lake: isotopic evidence for the importance of dissolved inorganic carbon cycling. Geochim. Cosmochim. Acta 61(12): 2453-2465. DOI: 10.1016/S0016-7037(97)00089-6.
  • [47]. Wanninkhof, R. & Knox, M., 1996. Chemical enhancement of CO2 exchange in natural waters. Limnol. Oceanogr. 41(4): 6892-697. DOI: 10.4319/lo.1996.41.4.0689.
  • [48]. Woszczyk, M., Bechtel, A. & Cieśliński, R. (2011). Interactions between microbial degradation of sedimentary organic matter and lake hydrodynamics in shallow water bodies, insights from Lake Sarbsko (northern Poland). Jour. Limnol. 70: 293-304. DOI: 10.3274/JL11-70-2-09.
  • [49]. Woszczyk, M., Bechtel, A., Gratzer, R., Kotarba, M., Kokociński, M. et al. (2011). Composition and origin of organic matter in surface sediments of Lake Sarbsko: A highly eutrophic and shallow coastal lake (northern Poland). Org. Geochem. 42: 1025-1038. doi:10.1016/j.orggeochem.2011.07.002.
  • [50]. Woszczyk, M., Spychalski, W., Lutyńska, M. & Cieśliński, R. (2010). Temporal trend In intensity of subsurface saltwater ingressions to a coastal Lake Sarbsko (northern Poland) Turing the last few decades. IOP Conf. Ser. Earth Env. Sci. 9. DOI: 10.1088/1755-1315/9/1/012013.
  • [51]. Woszczyk, M., Tylmann, W., Jędrasik, J., Szarafin, T., Stach, A. et al. (2014). Recent sedimentation dynamics in a shallow coastal lake (Lake Sarbsko, northern Poland): driving factors, processes and effects. Marine and Freshwater Research 65(12): 1102-1115. http://dx.doi.org/10.1071/MF13336.
  • [52]. Wu, F.C., Qing, II.R., Wan, G.J., Tang, D.G., Huang, R.G. et al. (1997). Geochemistry of of HCO3- at the sediment-water interface of lakes from the southwestern Chinese plateau. Wat. Air Soil Poll. 99: 381-390. DOI: 10.1023/A:1018331204630.
  • [53]. Xu, J., Fan, Ch. & Teng, H.H. (2012). Calcite dissolution kinetics in view of Gibbs free energy, dislocation density, and pCO2. Chem. Geol. 322-323, 11-18. DOI: 10.1016/j. chemgeo.2012.04.019.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-13314c5b-9e8d-483f-936d-65dc63a1ddb2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.