PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Gas hold-up for gas-liquid and biophase-gas-liquid systems agitated in a vessel equipped with vertical tubular baffles

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The influence of the agitator type, agitator speed, superficial gas velocity, type of sugar (glucose or sucrose) and the presence of yeast in the system on the gas hold-up in an agitated vessel with 24 vertical tubular baffles (located on the circuit in the vessel) has been presented in this paper. The measurement of gas hold-up was conducted in an agitated vessel with inner diameter of D = 0.288 m and liquid height of H = 0.288 m. Three different agitators were used in the experimental study. Five gas-liquid and two biophase-gas-liquid systems were agitated in an agitated vessel. Air was used as gas. The influence of gas flow number, Weber number, the mass fraction of aqueous sugar solution ci, and mass fraction of yeast suspension ys for gas-liquid and biophase-gas-liquid systems on the gas hold-up ϕ was described mathematically. These equations do not have equivalents in the literature.
Rocznik
Strony
art. no. e78
Opis fizyczny
Bibliogr. 40 poz., rys.
Twórcy
  • West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering, Piastów Ave. 42, 71-065 Szczecin, Poland
  • West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering, Piastów Ave. 42, 71-065 Szczecin, Poland
Bibliografia
  • 1. Amiraftabi M., Khiadani M., Mohammed H.A., 2020. Performance of a dual helical ribbon impeller in a two-phase (gas-liquid) stirred tank reactor. Chem. Eng. Process. Process Intensif., 148, 107811. DOI: 10.1016/j.cep.2020.107811.
  • 2. Bao Y., Yang J., Wang B., Gao Z., 2015. Influence of impeller diameter on local gas dispersion properties in a sparged multi-impeller stirred tank. Chin. J. Chem. Eng., 23, 615–622. DOI: 10.1016/j.cjche.2014.12.006.
  • 3. Barros P.L., Ein-Mozaffari F., Lohi A., 2022. Gas dispersion in non-Newtonian fluid with mechanically agitated systems: a review. Processes, 10, 275. DOI: 10.3390/pr10020275.
  • 4. Bednarski W., Fiedurka J., 2007. Basics of industrial biotechnology (in Polish). WNT, Warszawa.
  • 5. Busciglio A., Grisafi F., Scargiali F., Brucata A., 2013. On the measurement of local gas hold-up, interfacial area and buble size distribution in gas-liquid contactors via light sheet and image analysis: imaging technique and experimental results. Chem. Eng. Sci., 102, 551–566. DOI: 10.1016/j.ces.2013.08.029.
  • 6. Bustamante M.C.C., Cerri M.O., Badino A.C., 2013. Comparison between average shear rates in conventional bioreactor with Rushton and Elephant ear impellers. Chem. Eng. Sci., 90, 92–100. DOI: 10.1016/j.ces.2012.12.028.
  • 7. Campesi A., Cerri M.O., Hokka C.O., Badino A.C., 2009. De- termination of the average shear rate in a stirred and aerated tank bioreactor. Bioprocess Biosyst. Eng., 32, 241–248. DOI: 10.1007/s00449-008-0242-4.
  • 8. Chinnasamy G., Kaliannan S., Eldho A., Nadarajan D., 2016. Development and performance analysis of a novel agitated vessel. Korean J. Chem. Eng., 33, 1181–1185. DOI: 10.1007/s11814-015-0264-y.
  • 9. Collignon M.-L., Delafosse A., Crine M., Toye D., 2010. Axial impeller selection for anchorage dependent animal cell culture in stirred bioreactors: methodology based on the impeller comparison at just-suspended speed of rotation. Chem. Eng. Sci., 65, 5929–5941. DOI: 10.1016/j.ces.2010.08.027.
  • 10. Cudak M., 2014. Hydrodynamic characteristics of mechanically agitated air-aqueous sucrose solutions. Chem. Process Eng., 35 97–107. DOI: 10.2478/cpe-2014-0007.
  • 11. Cudak M., 2016. Experimental and numerical analysis of transfer processes in a biophase-gas-liquid system in a bioreactor with an impeller (in Polish). BEL Studio Sp. z o.o., Warszawa, Poland.
  • 12. Cudak M., 2020. The effect of vessel sale on gas hold-up in gas-liquid systems. Chem. Process Eng., 41, 241–256. DOI: 10.24425/cpe.2020.136010.
  • 13. Cudak M., Rakoczy R., 2022. Hydrodynamics of gas-liquid and biophase-gas-liquid systems in stirred tanks of different scales. Korean J. Chem. Eng., 39, 2959–2971. DOI: 10.1007/s11814-022-1281-2.
  • 14. de Jesus S.S., Moreira Neto J., Maciel Filho R., 2017. Hydrodynamics and mass transfer in bubble column, conventional airlift, stirred airlift and stirred tank bioreactors, using viscous fluid: a comparative study. Biochem. Eng. J., 118, 70–81. DOI: 10.1016/j.bej.2016.11.019.
  • 15. Devi T.T., Kumar B., 2014. Effects of superficial gas velocity on process dynamics in bioreactors. Thermophys. Aeromech., 21, 365–382. DOI: 10.1134/S086986431403010X.
  • 16. Gelves R., Dietrich A., Takors R., 2014. Modeling of gas-liquid mass transfer in a stirred tank bioreactor agitated by Rushton turbine or a new pitched blade impeller. Bioprocess Biosyst. Eng., 37, 365–375. DOI: 10.1007/s00449-013-1001-8.
  • 17. Gogate P.R., Beenackers A.A.C.M., Pandit A.B., 2000. Multiple-impeller systems with a special emphasis on bioreactors: a critical review. Biochem. Eng. J., 6, 109–144. DOI: 10.1016/s1369-703x(00)00081-4.
  • 18. Jamshed A., Cooke M., Ren Z., Rodgers T.L., 2018. Gas–liquid mixing in dual agitated vessels in the heterogeneous regime. Chem. Eng. Res. Des., 133, 55–69. DOI: 10.1016/j.cherd.2018.02.034.
  • 19. Jamshidzadeh M., Ein-Mozaffari F., Lohi A., 2020. Local and overall gas holdup in an aerated coaxial mixing system containing a non-Newtonian fluid. AIChE J., 66, e17016. DOI: 10.1002/aic.17016.
  • 20. Kamieński J., 2004. Agitation of multiphase systems (in Polish). WNT, Warszawa, Poland.
  • 21. Karcz J., Major M., 2001. Experimental studies of heat transfer in an agitated vessel equipped with vertical tubular coil. Chem. Process Eng., 22, 445–459.
  • 22. Khalili F., Jafari Nasr M., Kazemzadeh A., Ein-Mozaffari F., 2018. Analysis of gas holdup and bubble behavior in a biopolimer solution inside a bioreactor using tomography and dynamic gas disengagement techniques. J. Chem. Technol. Biotechnol., 93, 340–349. DOI: 10.1002/jctb.5356.
  • 23. Liu B., Xiao Q., Gao P., Sunder B., Fan F., 2020. Investigation of gas–liquid dispersion and mass transfer performance of wide-viscosity-range impellers in water solutions of xanthan gum. Chem. Eng. Res. Des., 154, 60–69. DOI: 10.1016/j.cherd.2019.12.005.
  • 24. Major-Godlewska M., Cudak M., 2022. Gas hold-up in vessel with dual impellers and different baffles. Energies, 15, 8685. DOI: 10.3390/en15228685.
  • 25. Major-Godlewska M., Karcz J., 2003. Gas hold-up and power consumption for gas-liquid system agitated in a stirred tank equipped with vertical coil. Chem. Pap., 57, 432–444.
  • 26. Major-Godlewska M., Karcz J., 2011. Process characteristics for a gas-liquid system agitated in a vessel equipped with a turbine impeller and tubular baffles. Chem. Pap., 65, 132–138. DOI: 10.2478/s11696-010-0080-0.
  • 27. Major-Godlewska M., Karcz J., 2012. Agitation of a gas-solid-liquid system in a vessel with high-speed impeller and vertical tubular coil. Chem. Pap., 66, 566–573. DOI: 10.2478/s11696-012-0148-0.
  • 28. Major-Godlewska M., Radecki D., 2018. Experimental analysis of gas hold-up for gas-liquid system agitated in a vessel equipped with two impellers and vertical tubular baffles. Pol. J. Chem. Technol., 20, 7–12. DOI: 10.2478/pjct-2018-0002.
  • 29. Moucha T., Linek V., Prokopová E., 2003. Gas hold-up, mixing time and gas-liquid volumetric mass transfer coefficient of various multiple-impeller configurations: Rushton turbine, pitched blade and techmix impeller and their combinations. Chem. Eng. Sci., 58, 1839–1846. DOI: 10.1016/S0009-2509(02)00682-6.
  • 30. Mueller S.G., Dudukovic M.P., 2010. Gas hold-up in gas-liquid stirred tanks. Ind. Eng. Chem. Res., 49, 10744–10750. DOI: 10.1021/ie100542a.
  • 31. Nair J., 2008. Introduction to biotechnology and genetic enineering. Infinity Science Press LLC, New Delhi, India
  • 32. Newell R., Grano S., 2007. Hydrodynamics and scale up in Rushton turbine flotation cells: Part 1 — Cell hydrodynamics. Int. J. Miner. Process., 81, 224–236. DOI: 0.1016/j.minpro.2006.06.007.
  • 33. Petříček R., Moucha T., Rejl F.J., Valenz L., Haidl J., Čmelíková T., 2018. Volumetric mass transfer coefficient, power input and gas hold-up in viscous liquid in mechanically agitated fermenters. Measurements and scale-up. Int. J. Heat Mass Transfer, 124, 1117–1135. DOI: 10.1016/j.ijheatmasstransfer.2018.04.045.
  • 34. Saravanan K., Ramamurthy V., Chandramohan K., 2009. Gas hold-up in multiple impeller agitated vessels. Mod. Appl. Sci., 3, 49–59. DOI: 10.5539/mas.v3n2p49.
  • 35. Stręk F., 1981. Agitation and agitated vessels (in Polish). WNT, Warszawa, Poland.
  • 36. Szewczyk K.W., 2003. Biochemical Technology (in Polish). Oficyna Wydawnicza Politechniki Warszawskiej, Warsaw, Poland.
  • 37. Wan X., Takahata Y., Takahashi K., 2016. Power consumption, gas holdup, and mass-transfer coefficient of triple-impeller con- figurations in a stirred vessels with vertical tubular coils. Can. J. Chem. Eng., 94, 349–354. DOI: 10.1002/cjce.22385.
  • 38. Xie M., Xia J., Zhou Z., Chu J., Zhuang Y., Zhang S., 2014. Flow pattern, mixing, gas hold-up and mass transfer coefficient of triple-impeller configurations in stirred tank bioreactors. Ind. Eng. Chem. Res., 53, 5941–5953. DOI: 10.1021/ie400831s.
  • 39. Yang S., Li X., Deng G., Yang Ch., Mao Z., 2014. Application of KHX impeller in a low-shear stirred bioreactor. Chin. J. Chem. Eng., 22, 1072–1077. DOI: 10.1016/j.cjche.2014.09.001.
  • 40. Zhu H., Nienow A.W., Bujalski W., Simmons M.J.H., 2009. Mixing studies in a model aerated bioreaktor equipped with an up- or a down-pumping ‘Elephant Ear’ agitator: power, hold-up and aerated flow field measurements. Chem. Eng. Res. Des., 87, 307–317. DOI: 10.1016/j.cherd.2008.08.013.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-131f276a-9b5a-401d-8625-6e079dfaa081
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.