Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents a mathematical model of a power controller for a high-frequency induction heating system based on a modified half-bridge series resonant inverter. The output real power is precise over the heating coil, and this real power is processed as a feedback signal that contends a closed-loop topology with a proportional-integral-derivative controller. This technique enables both control of the closed-loop power and determination of the stability of the high-frequency inverter. Unlike the topologies of existing power controllers, the proposed topology enables direct control of the real power of the high-frequency inverter.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
827--841
Opis fizyczny
Bibliogr. 18 poz., rys., wz.
Twórcy
autor
- Department of Electrical Engineering Saroj Mohan Institute of Technology, Degree Engineering Division Guptipara, Hooghly-712512, West Bengal, India
autor
- Department of Electrical Engineering Batanagar Institute of Engineering, Management & Science, A unit of Techno India™ Group B7-360 / New,Ward No. 30, Putkhali, Maheshtala, Kolkata-700141,West Bengal, India
autor
- Department of Electrical Engineering Saroj Mohan Institute of Technology, Degree Engineering Division Guptipara, Hooghly-712512, West Bengal, India
autor
- Department of Electrical Engineering Indian Institute of Technology, Indian School of Mines, Dhanbad (Under Mhrd, Govt. Of India) Dhanbad-826004, Jharkhand, India
autor
- Department of Electrical Eng. National Institute of Technology, Meghalaya An Institute of National Importance under MHRD, Govt. of India Bijni Complex, Laitumkhrah, Shillong-793003 Meghalaya, India
Bibliografia
- [1] Sarnago H., Mediano L.A., Burdio J.M., Class-D/DE dual mode-operation resonant converter for improved-efficiency domestic induction heating system, IEEE Trans. Power Electronics, vol. 28, no. 3, pp. 1274-1285 (2013).
- [2] Sarnago H., Gil L.O., Mediano A., M. Burdio J., Modulation scheme for improved operation of an RB-IGBT-based resonant inverter applied to domestic induction heating, IEEE Trans. Ind. Electron., vol. 60, no. 5, pp. 2066-2073 (2013).
- [3] Sinha D., Sadhu P.K., Pal N., Design of an Induction Heating Unit Used in Hyperthermia Treatment, Advances in Therapeutic Engineering, CRC Press, Taylor & Francis Group, pp. 215-266 (2012).
- [4] Pal P., Sadhu P.K., Pal N., Bhowmik P., A New Heat Treatment Topology for Reheating of Blood Tissues after Open Heart Surgery, Advancements of Medical Electronics, Springer India, pp. 101-108 (2015).
- [5] York B., Yu W., Lai J.S., Hybrid-frequency modulation for PWM integrated resonant converters, IEEE Trans. Power Electronics, vol. 28, no. 2, pp. 985-994 (2013).
- [6] Sadhu P.K., N. Pal, P. Pal, Sanyal S., Selection of power semiconductor switches in modified half bridge resonant inverter fitted induction heater in power line for less harmonic injection, International Journal of Power Electronics and Drive Systems, vol. 6, no. 1, pp. 121-128 (2015).
- [7] Sadhu P.K., Pal N., Bhattacharya A., Design of Working Coil Using Litz Wire for Industrial Induction Heater, Lap Lambert Academic Publishing, ISBN: 978-3-659-35853-1, pp. 1-65 (2013).
- [8] Espi J.M., Navarro A.E., Maicas J. et al., Control circuit design of the L-LC resonant inverter for induction heating, Power Electronics Specialists Conference, IEEE 31st Annual, vol. 3, pp. 1430-1435 (2000).
- [9] Bolsens B., De Brabandere K., Van den Keybus J. et al., Model-based generation of low distortion currents in grid coupled PWM-inverters using an LCL output filter, IEEE Trans. Power Electronics, vol. 2, pp. 1032-1040 (2006).
- [10] Pham H.N., Fujita H., Ozaki K., Uchida N., Estimating method of heat distribution using 3-D resistance matrix for zone-control induction heating systems, IEEE Trans. Power Electronics, vol. 27, no. 7, pp. 3374-3382 (2012).
- [11] Mohanta D.K., Sadhu P.K., Chakrabarti R., Fuzzy Markov model for determination of fuzzy state probabilities of generating units including the effect of maintenance scheduling, IEEE Transactions on Power Systems, vol. 20, no. 4, pp. 2117-2124 (2005).
- [12] Navarro D., Lucía O., Barragán L.A., Artigas J.I., Urriza I., Jiménez O., Synchronous FPGA-based implementations of digital pulse width modulators, IEEE Trans. Power Electronics, vol. 27, no. 5, pp. 2515-2525 (2012).
- [13] Esteve V., Sanchis-Kilders E., Jordan J. et al., Improving the efficiency of IGBT series resonant inverters using pulse density modulation, IEEE Trans. Ind. Electron., vol. 58, no. 3, pp. 979-987 (2011).
- [14] Khan I., Tapson J., De Vries I., Frequency control of a current-fed inverter for induction heating, Industrial Electronics, Proceedings of the 2000 IEEE International Symposium, vol. 1, pp. 343-346 (2000).
- [15] Egalon J., Caux S., Maussion P., Souley M., Pateau O., Multiphase system for metal disc induction heating: Modeling and RMS current control, IEEE Trans. Ind. Appl., vol. 48, no. 5, pp. 1692-1699.
- [16] Said A., Djamel B., Boudjema I., Structural analysis for fault detection and isolation using the matching rank algorithm for residual generation: Application on an industrial water heating system, Journal of Control Engineering and Applied Informatics, vol. 15, no. 2 (2013).
- [17] Lucía O., Burdío J.M., Millán I., Acero J., Puyal D., Load-adaptive control algorithm of half-bridge series resonant inverter for domestic induction heating, IEEE Trans. Power Electronics, vol. 56, no. 8, pp. 3106-3116 (2009).
- [18] Trentin A., Zanchetta P., Clare J., Wheeler P., Automated optimal design of input filters for direct ac/ac matrix converters, IEEE Trans. Ind. Electron., vol. 59, no. 7, pp. 2811-2823 (2012).
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-131ea0a5-40da-4939-9a1e-22217a0db27e