PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Phytoplankton Dynamics and Its Relation to Physicochemical Parameters in the Dry Season of Maninjau Lake, West Sumatra, Indonesia

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Physicochemical parameters play a significant role in determining phytoplankton structure and dynamics in the lake. The present study investigated the phytoplankton dynamics and their correlation with physicochemical parameters in the dry season of Maninjau Lake. The parameters measured, including temperature, transparency, pH, DO, TN, and TP concentrations, were collected from seven lake locations, i.e., in the middle of the lake, near domestic, hydropower, endemic fisheries, and aquaculture cage areas, and inlet-outlet rivers. Phytoplankton samples were collected from the middle of the lake, near domestic and aquaculture cage areas. TSI analysis shows that Maninjau Lake was hypereutrophic, with an average TSI of 101.15. The phytoplankton community comprises six classes and 22 species dominated by Microcystis aeroginosa and Synedra acus. Bacillariophyceae had the highest phytoplankton concentration, while Cyanophyceae had the highest density. The diversity and equity index of the phytoplankton community structure were low and less evenly distributed, confirming that the lake was hypereutrophic. The highest diversity index was found in the middle of the lake or the most profound part, while the lowest was near the domestic area. Among the physicochemical parameters, transparency has a strong correlation with dominant phytoplankton.
Rocznik
Strony
218--231
Opis fizyczny
Bibliogr. 61 poz., rys., tab.
Twórcy
  • Department of Environmental Engineering Faculty of Engineering, Universitas Andalas, Padang City 25163, Indonesia
  • Department of Environmental Engineering Faculty of Engineering, Universitas Andalas, Padang City 25163, Indonesia
  • Department of Environmental Engineering Faculty of Engineering, Universitas Andalas, Padang City 25163, Indonesia
Bibliografia
  • 1. Alkhamis, Y.A., Mathew, R.T., Nagarajan, G., Rahman, S.M., Rahman, M.M. 2022. pH induced stress enhances lipid accumulation in microalgae grown under mixotrophic and autotrophic condition. Frontiers in Energy Research, 10(October). https://doi.org/10.3389/fenrg.2022.1033068
  • 2. Amorim, C.A., Moura, A. do N. 2021. Ecological impacts of freshwater algal blooms on water quality, plankton biodiversity, structure, and ecosystem functioning. Science of the Total Environment, 758. https://doi.org/10.1016/j.scitotenv.2020.143605
  • 3. Standard methods for the examination of water and wastewater, 1546 (2017).
  • 4. Badan Standardisasi Nasional. 2008. SNI 6989.57:2008 Mengenai Air dan Air Limbah-Bagian 57:Metode Pengambilan Contoh Air Permukaan. https://doi.org/SNI 6989.59:2008
  • 5. Baker, P.D., Fabbro, L.D. 1999. A Guide to the Identification of Common Blue-Green Algae (Cy- anoprokaryotes) in Australian Freshwaters (CRCFE Iden). Co-Operative Research Centre for Freshwater Ecology.
  • 6. Balai Wilayah Sungai Sumatera V. 2016. Kualitas Air Danau Maninjau.
  • 7. Bockwoldt, K.A., Nodine, E.R., Mihuc, T.B., Shambaugh, A.D., Stockwell, J.D. 2017. Reduced Phytoplankton and Zooplankton Diversity Associated with Increased Cyanobacteria in Lake Champlain, USA. Journal of Contemporary Water Research & Education, 160(1), 100–118. https://doi.org/10.1111/j.1936-704x.2017.03243.x
  • 8. Bold, H.C., Wynne, M.J. 1978. Introduction to the Algae: Structure and Reproduction. Prentice-Hall.
  • 9. Bukowska, A., Kaliński, T., Koper, M., Kostrzewska-Szlakowska, I., Kwiatowski, J., Mazur-Marzec, H., Jasser, I. 2017. Predicting blooms of toxic cyanobacteria in eutrophic lakes with diverse cyanobacterial communities. Scientific Reports, 7(1), 1–12. https://doi.org/10.1038/s41598-017-08701-8
  • 10. Bužančić, M., Ninčević Gladan, Ž., Marasović, I., Kušpilić, G., Grbec, B. 2016. Eutrophication influence on phytoplankton community composition in three bays on the eastern Adriatic coast. Oceanologia, 58(4), 302–316. https://doi.org/10.1016/j.oceano.2016.05.003
  • 11. Cavalcante, K.P., Cardoso, L. de S., Sussella, R., Becker, V. 2016. Towards a comprehension of Ceratium (Dinophyceae) invasion in Brazilian freshwaters: autecology of C. furcoides in subtropical reservoirs. Hydrobiologia, 771(1), 265–280. https://doi.org/10.1007/s10750-015-2638-x
  • 12. Fukushima, T., Matsushita, B., Subehi, L., Setiawan, F., Wibowo, H. 2018a. Will hypolimnetic waters become anoxic in all deep tropical lakes? Scientific Reports, 8(March), 1–9. https://doi.org/10.1038/srep45320
  • 13. Fukushima, T., Matsushita, B., Subehi, L., Setiawan, F., Wibowo, H. 2018b. Will hypolimnetic waters become anoxic in all deep tropical lakes? Scientific Reports, 8(March), 1–9. https://doi.org/10.1038/srep45320
  • 14. Glibert, P.M., Burford, M.A.M.A., Glibert, P.M., Burford, M.A.M.A. 2017. Globally changing nutrient loads and harmful algal blooms: Recent advances, new paradigms, and continuing challenges. Oceanography, 30(1), 58–69. https://doi.org/10.5670/oceanog.2017.110
  • 15. Hendra, N. 2022. Keramba Jaring Apung di Danau Maninjau Bakal Ditarik, Gubernur: Sudah Over Capacity. Bisnis.Com. https://sumatra.bisnis.com/read/20220816/533/1567557/keramba-jaring-apung-di-danau-maninjau-bakal-ditarik-gubernur-sudah-over-capacity
  • 16. Huisman, J., Codd, G.A., Paerl, H.W., Ibelings, B.W., Verspagen, J.M.H., Visser, P.M. 2018. Cyano- bacterial blooms. In Nature Reviews Microbiology, 16(8), 471–483. Nature Publishing Group. https://doi.org/10.1038/s41579-018-0040-1
  • 17. Irwin, A.J., Finkel, Z.V., Müller-Karger, F.E., Ghinaglia, L.T. 2015. Phytoplankton adapt to changing ocean environments. Proceedings of the National Academy of Sciences of the United States of America, 112(18), 5762–5766. https://doi.org/10.1073/pnas.1414752112
  • 18. Joanna, M., Tarczynska, M., Walter, Z., Zalewski, M. 2003. Natural Toxins from Cyanobacteria. Acta Biologica Cracoviensia Series Botanica, 45(2), 9–20.
  • 19. Kementerian Lingkungan Hidup dan Kehutanan. 2009. Peraturan Menteri Lingkungan Hidup dan Kehutanan Nomor 28 Tahun 2009 Tentang Daya Tampung Beban Pencemaran Air Danau dan/atau Waduk Menteri.
  • 20. Kementerian Lingkungan Hidup Republik Indonesia. 2015a. Gerakan Penyelamatan Danau (GER- MADAN) Maninjau.
  • 21. Kementerian Lingkungan Hidup Republik Indonesia. 2015b. Gerakan Penyelamatan Danau (GER- MADAN) Maninjau.
  • 22. Khattab, M.F.O., Merkel, B. 2015. Secchi disc visibility and its relationship with water quality parameters in the photosynthesis zone of Mosul Dam Lake, Northern Iraq. FOG - Freiberg Online Geoscience, 39(June), 87–102.
  • 23. Kolzau, S., Wiedner, C., Rücker, J., Köhler, J., Köhler, A., Dolman, A.M. 2014. Seasonal patterns of Nitrogen and Phosphorus limitation in four German Lakes and the predictability of limitation status from ambient nutrient concentrations. PLoS ONE, 9(4).
  • 24. Komala, P.S., Nur, A., Nazhifa, I. 2019. Pengaruh Parameter Lingkungan Terhadap Kandungan Senyawa Organik Danau Maninjau Sumatera Barat. Seminar Nasional Pembangunan Wilayah Dan Kota Berkelanjutan, 265–272.
  • 25. Kumar, R., Jha, A.K. 2015. Diversity of phytoplakton in Kamla river water between Jaynagar and Jhanjharpur. International Journal of Advanced Research, 3(6), 880–893.
  • 26. Li, X., Sha, J., Wang, Z.-L. 2017a. Chlorophyll-A Prediction of Lakes with Different Water Quality Patterns in China Based on Hybrid Neural Networks. Water, 9(7), 524. https://doi.org/10.3390/w9070524
  • 27. Li, X., Sha, J., Wang, Z.-L. 2017b. Chlorophyll-A Prediction of Lakes with Different Water Quality Patterns in China Based on Hybrid Neural Networks. Water, 9(7), 524. https://doi.org/10.3390/w9070524
  • 28. Lukman, Sutrisno, Hamdani, A. 2013. Pengamatan Pola Stratifikasi di Danau Maninjau Sebagai Potensi Tubo Belerang. Limnotek, 20(2), 129–140.
  • 29. Lyu, L., Song, K., Wen, Z., Liu, G., Shang, Y., Li, S., Tao, H., Wang, X., Hou, J. 2022. Estimation of the lake trophic state index (TSI) using hyperspectral remote sensing in Northeast China. Optics Express, 30(7), 10329. https://doi.org/10.1364/oe.453404
  • 30. Mancuso, J.L., Weinke, A.D., Stone, I.P., Hamsher, S.E., Villar-argaiz, M., Biddanda, B.A. 2021. Cold and wet : Diatoms dominate the phytoplankton community during a year of anomalous weather in a Great Lakes estuary. Journal of Great Lakes Research, 47(5), 1305–1315. https://doi.org/10.1016/j.jglr.2021.07.003
  • 31. Merina, G., Afrizal, S., Izmiarti. 2014. Komposisi dan Struktur Komunitas Fitoplankton di Danau Maninjau Sumatera Barat. Jurnal Biologi Universitas Andalas (J. Bio. UA.), 3(2014), 267–274. https://doi.org/10.1039/c3dt50493j
  • 32. Michael, P. 1984a. Ecological methods for field and laboratory investigations. Tata Mc Graw-Hill Publishing.USA.
  • 33. Michael, P. 1984b. Ecological methods for field and laboratory investigations. Tata Mc Graw-Hill Publishing.USA.
  • 34. Mosello, R., Bruni, P., Rogora, M., Tartari, G., Dresti, C. 2018. Long-term change in the trophic status and mixing regime of a deep volcanic lake (Lake Bolsena, Central Italy). Limnologica, 72(August), 1–9. https://doi.org/10.1016/j.limno.2018.07.002
  • 35. Nomosatryo, C.H.S. 2016. Changes in water quality and trophic status associated with cage aquaculture in Lake Maninjau, Indonesia. IOP Earth and Environmental Science. https://doi.org/10.1088/1755-1315/31/1/012027
  • 36. Odum, E.P., Odum, H.T. 1959. Fundamentals of Ecology. Saunders.
  • 37. Pathak, D., Hutchins, M., Brown, L., Loewenthal, M., Scarlett, P., Armstrong, L., Nicholls, D., Bowes, M., Edwards, F. 2021. Hourly prediction of phytoplankton biomass and Its environmental controls in lowland rivers. Water Resources Research, 57(3), 1–20. https://doi.org/10.1029/2020WR028773
  • 38. Pemerintah Republik Indonesia. 2021. Peraturan Pemerintah Nomor 22 Tahun 2021 tentang Pedoman Perlindungan dan Pengelolaan Lingkungan Hidup. In Sekretariat Negara Republik Indonesia, 1, 078487A.
  • 39. Poole, R.W. 1974. An Introduction to Qualitative Ecology. McGraw-Hill.
  • 40. Pratiwi, H., Damar, A., Sulistiono. 2018. Phytoplankton community structure in the Estuary of Donan River, Cilacap, Central Java, Indonesia. Biodiversitas, 19(6), 2104–2110. https://doi.org/10.13057/biodiv/d190616
  • 41. Prescott, G.W. 1951. Algae of the western great lakes area (Bulletin N). W.C. Brown Co.
  • 42. Querijero, B.L., Mercurio, A.L. 2016. Water quality in aquaculture and non-aquaculture sites in Taal lake, Batangas, Philippines. Journal of Experimental Biology and Agricultural Sciences, 4(1), 109–115. https://doi.org/10.18006/2016.4(1).109.115
  • 43. Scott, A.M., Prescott, G.W. 1961. Indonesian Desmid. Hydrobiologia, XVII(1–2), 1–132.
  • 44. Sharma, R.C., Singh, N., Chauhan, A. 2016. The influence of physico-chemical parameters on phytoplankton distribution in a head water stream of Garhwal Himalayas: A case study. Egyptian Journal of Aquatic Research, 42(1), 11–21. https://doi.org/10.1016/j.ejar.2015.11.004
  • 45. Sonmez, F., Kutlu, B., Sesli, A. 2017. Spatial and temporal distribution of phytoplankton in Karkamis Dam Lake (Sanliurfa/Turkey). Fresenius Environmental Bulletin, 26(10), 6234–6245. www.algae-base.org
  • 46. Stoyneva-Gärtner, M.P., Morana, C., Borges, A.V., Okello, W., Bouillon, S., Deirmendjian, L., Lambert, T., Roland, F., Nankabirwa, A., Nabafu, E., Darchambeau, F., Descy, J.P. 2020. Diversity and ecology of phytoplankton in Lake Edward (East Africa): Present status and long-term changes. Journal of Great Lakes Research, 46(4), 741–751. https://doi.org/10.1016/j.jglr.2020.01.003
  • 47. Sugie, K., Fujiwara, A., Nishino, S., Kameyama, S., Harada, N. 2020. Impacts of temperature, CO2, and salinity on phytoplankton community composition in the western arctic ocean. Frontiers in Marine Science, 6(January). https://doi.org/10.3389/fmars.2019.00821
  • 48. Sulastri, Henny, C., Santoso, A.B. 2019. Phytoplankton composition and the occurrence of cyanobacterial bloom in Lake Maninjau, Indonesia. IOP Conference Series: Earth and Environmental Science, 380(1). https://doi.org/10.1088/1755-1315/380/1/012020
  • 49. Sulastri, Sulawesty, F., Nomosatryo, S. 2015a. Long term monitoring of water quality and phytoplankto changes in Lake Maninjau, West Sumatra, Indonesia. Oseanologi Dan Limnologi Di Indonesia, 41(3), 339–353.
  • 50. Sulastri, Sulawesty, F., Nomosatryo, S. 2015b. Long term monitoring of water quality and phytoplankton changes in Lake Maninjau, West Sumatra, Indonesia. Oseanologi Dan Limnologi Di Indonesia, 41(3), 339–353.
  • 51. Syandri, H. 2016. Kondisi Kualitas Air Pada Daerah Pemeliharaan Ikan Keramba Jaring Apung di Danau Maninjau. Prosiding Seminar Nasional Tahunan Ke-V Hasil-Hasil Penelitian Perikanan Dan Kelautan, B3, 6, 301–310.
  • 52. Teubner, K., Teubner, I., Pall, K., Kabas, W., Tolotti, M., Ofenböck, T., Dokulil, M.T. 2020. New Emphasis on Water Transparency as Socio-Ecological Indicator for Urban Water: Bridging Ecosystem Service Supply and Sustainable Ecosystem Health. Frontiers in Environmental Science, 8(October), 1–22. https://doi.org/10.3389/fenvs.2020.573724
  • 53. T-Krasznai, E., Török, P., Borics, G., Lukács, Á., Kókai, Z., Lerf, V., Görgényi, J., B-Béres, V. 2022. Functional dynamics of phytoplankton assemblages in hypertrophic lakes: Functional- and species diversity is highly resistant to cyanobacterial blooms. Ecological Indicators, 145. https://doi.org/10.1016/j.ecolind.2022.109583
  • 54. Tonolla, M., Storelli, N., Danza, F., Ravasi, D., Peduzzi, S., Posth, N.R., Cox, R. P., Gregersen, L. H., Daugbjerg, N., Frigaard, N. 2017. Ecology of Meromictic Lakes, 228. https://doi.org/10.1007/978-3-319-49143-1
  • 55. Vajravelu, M., Martin, Y., Ayyappan, S., Mayakrishnan, M. 2018a. Seasonal influence of physico-chemical parameters on phytoplankton diversity, community structure and abundance at Parangipettai coastal waters, Bay of Bengal, South East Coast of India. Oceanologia, 60(2), 114–127. https://doi.org/10.1016/j.oceano.2017.08.003
  • 56. Vajravelu, M., Martin, Y., Ayyappan, S., Mayakrishnan, M. 2018b. Seasonal influence of physicochemical parameters on phytoplankton diversity, community structure and abundance at Parangipettai coastal waters, Bay of Bengal, South East Coast of India. Oceanologia, 60(2), 114–127. https://doi.org/10.1016/j.oceano.2017.08.003
  • 57. Wisnu, R.P., Karuniasa, M., Moersidik, S.S. 2019. The effect of fish aquaculture on water quality in Lake Cilala, Bogor Regency. The 3rd International Seminar on Natural Resources and Environmental Management, 399(012111), 1–8. https://doi.org/10.1088/1755-1315/399/1/012111
  • 58. Yamaji, I. 1980. Illustrations of the marine plankton of Japan (Vol. 45). Hoikusha.
  • 59. Youn, S. J., Yu, S. J., & Byeon, M. S. (2020). Occurrence characteristics of stephanodiscus and synedra in relation to water temperature and concentrations of nutrients during spring diatom bloom in lake Paldang, Korea. Applied Ecology and Environmental Research, 18(4), 5135–5147. https://doi.org/10.15666/aeer/1804_51355147
  • 60. Yu, Z., Yang, J., Amalfitano, S., Yu, X., Liu, L. 2014. Effects of water stratification and mixing on microbial community structure in a subtropical deep reservoir. Scientific Reports, 4, 1–7. https://doi.org/10.1038/srep05821
  • 61. Zhou, Y., Yu, D., Yang, Q., Pan, S., Gai, Y., Cheng, W., Liu, X., Tang, S. 2021. Variations of water transparency and impact factors in the bohai and yellow seas from satellite observations. Remote Sensing, 13(3). https://doi.org/10.3390/rs13030514
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-131e8c26-071c-4faf-b9be-a0b9f68dbf43
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.