PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effects of copper ions on malachite sulfidization flotation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, the effects of copper ions (Cu2+) on the sulfidization (Na2S) flotation of malachite was investigated using micro-flotation experiments, zeta-potential measurements, X-ray photoelectron spectroscopy (XPS) analysis, adsorption experiments, and Materials Studio simulation. The results indicated that the flotation recovery of malachite decreased after the pretreatment of the mineral particles with Cu2+ ions prior to the addition of Na2S. The results for zeta-potential measurements and XPS analysis revealed that less sulfide ion species in the pulp solution transferred onto the mineral surface, the sulfidization of malachite surface weakened. The adsorption amount of collector on the mineral surface decreased, and this finding was confirmed by the results of the zeta-potential and adsorption experiments. Materials Studio simulation revealed that the adsorption energy of HS- ions and C4H9OCSS- ions on malachite surface increased after the adding of Cu2+ ion. The competitive adsorption made Cu2+ ions depress sulfidization flotation of malachite, the dissolution of mineral surface affected the adsorption of reagents on it, and decreased the floatability of malachite.
Słowa kluczowe
Rocznik
Strony
300--312
Opis fizyczny
Bibliogr. 38 poz., rys., wz.
Twórcy
autor
  • School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, China
  • Northeastern University Genetic Mineral Processing Research Center, Shenyang 110819, China
autor
  • School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, China
autor
  • School of Zijin Mining, Fuzhou University, Fuzhou, Fujian 350108, China
  • State Key Laboratory of Mineral Processing, Beijing 102628, China
autor
  • School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, China
autor
  • School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, China
autor
  • School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, China
Bibliografia
  • BOULTON, A., FORNASIERO, D., RALSTON, J., 2003. Characterisation of sphalerite and pyrite flotation samples by XPS and ToF-SIMS. Int. J. Miner. Process. 70, 205-219.
  • CASTRO, S., SOTO, H., GOLDFARB, J., LASKOWKI, J., 1974. Sulphidizing reactions in the flotation of oxidized copper minerals, II. Role of the adsorption and oxidation of sodium sulphide in the flotation of chrysocolla and malachite. Int. J. Miner. Process. 1(2), 151-161.
  • CHEN, X., PENG, Y., BRADSHAW, D., 2014. The separation of chalcopyrite and chalcocite from pyrite in cleaner flotation after regrinding. Miner. Eng. 58, 64-72.
  • CHOI, J.,CHOI, S.Q., PARK, Y., HAN, Y., KIM, H., 2016. Flotation behavior of malachite in mono- and di-valent salt solutions using sodium oleate as a colletor as a colletor. Int. J. Miner. Process. 146, 38-45.
  • CORIN, K.C., KALICHINI, M., O‘CONNOR, C.T., SIMUKANGAB, S., 2017. The recovery of oxide copper minerals from a complex copper ore by sulphidisation. Miner. Eng. 102, 15-17.
  • DENG, J.S., LEI, Y.H., WEN, S.M., CHEN, Z.X., 2015. Modeling interactions between ethyl xanthate and Cu/Fe ions using DFT/B3LYP approach. Int. J. Miner. Process. 140, 43-49.
  • FENG, Q.C., WEN, S.M., ZHAO, W.J., DENG, J.S., XIAN, Y.J., 2015. Adsorption of sulfide ions on cerussite surfaces and implications for flotation. Appl. Surf. Sci. 360, 365-372.
  • FENG, Q.C., WEN, S.M., DENG, J.S., ZHAO, W.J., 2017. Combined DFT and XPS investigation of enhanced adsorption of sulfide species onto cerussite by surface modification with chloride. Appl Surf Sci. 425, 8-15.
  • FENG, Q.C., ZHAO, W.J., WEN, S.M., CAO, Q.B., 2017. Copper sulfide species formed on malachite surfaces in relations to flotation. J. Ind. Eng. Chem. 48, 125-132.
  • FENG, Q.M., ZHAO, W.J, WEN, S.M, 2018. Surface modification of malachite with ethanediamine and its effect on sulfidization flotation. Appl. Surf. Sci. 436, 823-831.
  • FENG, Q.C., ZHAO, W.J., WEN, S.M., 2018. Ammonia modification for enhancing adsorption of sulfide species onto malachite surfaces and implications for flotation. J. Alloys. Compd. 744, 301-309.
  • HARVEY, D.T., LINTON, R.W., 1984. X-ray photoelectron spectroscopy (XPS) op adsorbed zinc on amorphous hydrous ferric oxide. Colloids Surf. 11, 81-96.
  • HOPE, G.A., WOODS, R., PARKER, G.K., BUCKLEY, A.N., MCLEAN, J., 2010. A vibrational spectroscopy and XPS investigation of the interaction of hydroxamate reagents on copper oxide minerals. Miner. Eng. 23, 952-959.
  • HTAY, M.T., OKAMURA, M., YOSHIZAWA, R., HASHIMOTO, Y., ITO, K., 2014. Synthesis of a cuprite thin film by oxidation of a Cu metal precursor utilizing ultrasonically generated water vapor. Thin Solid Films. 556, 211-215.
  • HUANG, Y.G., LIU, G.Y., LIU, J.,YANG, X.L., ZHAN, Z.Y., 2018. Thiadiazole-thione surfactants: Preparation, flotation performance and adsorption mechanism to malachite. J. Ind. Eng. Chem. 67, 99-108.
  • HUANG, K.H., CAO, Z.F., WANG, S., YANG, J., HONG, Z. H., 2019. Flotation performance and adsorption mechanism of styryl phosphonate mono-iso-octyl ester to malachite. Colloids Surf., A. 579, 8.
  • KHMELEVA, T.N., SKINNER, W., BEATTIE, D.A., 2005. Depressing mechanisms of sodium bisulphite in the collectorless flotation of copper-activated sphalerite. Int. J. Miner. Process. 76, 43-53.
  • LI, F., ZHONG, H., XU, H., JIA, H., LIU, G., 2015. Flotation behavior and adsorption mechanism of –hydroxyoctyl phosphinic acid to malachite. Miner. Eng. 71, 188-193.
  • LI, Y.Q., CHEN, J.H., KANG, D., GUO, J., 2012. Depression of pyrite in alkaline medium and its subsequent activation by copper. Miner. Eng. 26, 64-69.
  • LIU, G.Y., HUANG, Y.G., QU, X.Y., XIAO, J.J., YANG, X.L., XU, Z.H., 2016. Understanding the hydrophobic mechanism of 3-hexyl-4-amino-1, 2,4-triazole-5-thione to malachite by ToF-SIMS, XPS, FTIR, contact angle, zeta potential and microflotation. Colloids Surf., A. 503, 34-42.
  • LIU, C., ZHU, G.L., SONG, S.X., LI H.Q., 2018. Interaction of gangue minerals with malachite and implications for the sulfidization flotation of malachite. Colloids Surf., A. 555, 679-684.
  • LIU, S., ZHONG, H., LIU, G.Y., XU, Z.H., 2018. Cu(I)/Cu(II) mixed-valence surface complexes of S- (2-hydroxyamino)-2-oxoethyl -N,N-dibutyldithiocarbamate: Hydrophobic mechanism to malachite flotation. J. Colloid Interface Sci. 512, 701-712.
  • LOTTER, N.O., BRADSHAW, D.J., BARNES, A.R., 2016. Classification of the Major Copper Sulphides into semiconductor types, and associated flotation characteristics. Miner. Eng. 96-97, 177-184.
  • MAO, Y.B., 2016. Flotation theoretical and experimental study on reinforced sulfuration flotation of malachite by ammoniumamine salt. Kunming: Kunming University of Science and Technology, 1−6.
  • MULLIKEN, R.S., 2004. Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I. J. Chem. Phys. 23 1833.
  • PARK, K., PARK, S., CHOI, J., KIM, G., TONG, M., KIM, H., 2016. Influence of excess sulfide ions on the malachitebubble interaction in the presence of thiol-collector. Sep. Purif. Technol. 168, 1-7.
  • POWELL, K.J., BROWN, P.L., BYRNE, R.H., GAJDA, T., HEFTER, G., SJOBERG, S., WANNER, H., 2007. Chemical speciation of environmentally significant metals with inorganic ligands Part 2: The Cu2+-OH-, Cl-, CO32-, SO42- and PO43- systems (IUPAC Technical Report). Pure Appl. Chem. 79, 895-950.
  • SHEN, P.L., LIU, D.W., ZHANG, X.L., JIA, X.D., SONG, K.W., LIU, D., 2019. Effect of (NH4)2SO4 on eliminating the depression of excess sulfide ions in the sulfidization flotation of malachite. Miner. Eng. 137, 43-52.
  • SRDJAN, M.B., 2010. Handbook of Flotation Reagents: Chemistry, Theory and Practice: Volume 2. Flotation of Gold, PGM and Oxide Minerals . Amsterdam: Elsevier Science. 47−50.
  • STENLID, J.H., SOLDEMO, M., JOHANSSON, A J., LEYGRAF, C., GOTHELID, M., WEISSENRIEDER, J., BRINCK, T., 2016.Reactivity at the Cu2O(100):Cu-H2O interface: a combined DFT and PES study. Phys. Chem. Chem. Phys. 18, 30570-30584.
  • SUN, W., SU, J.F., ZHANG, G., HU, Y.H., 2012. Separation of sulfide lead-zinc-silver ore under low alkalinity condition. Journal of Central South University. 19, 2307-2315.
  • SUN, W., CEDER, G., 2018. A topological screening heuristic for low-energy, high-index surfaces. Surf. Sci. 669, 50-56.
  • SUSSE, P., 1966.Verfeinerung der Kristallstruktur des Malachits, Cu2(OH)2CO3. Acta Crystallogr. 53, 80.
  • WEN, S.M., DENG, J.S., XIAN, Y.J., XIAN, Y.J., LIU, D., 2013. Theory analysis and vestigial information of Surface relaxation of natural chalcopyrite mineral crystal. T. Nonferr. Metal. Soc. 23, 796-803.
  • WU, D.D., MA, W.H., MAO, Y.B., DENG, J.S., WEN, S.M., 2017. Enhanced sulfidation xanthate flotation of malachite using ammonium ions as activator. Sci. Rep. 7, 2086.
  • WU, D.D., MAO, Y.B., DENG, J.S., WEN, S.M., 2017. Activation mechanism of ammonium ions on sulfidation of malachite (–201) surface by DFT study. Appl. Surf. Sci. 410, 126-133.
  • YIN, W.Z., SUN, Q.Y., LI, D., TANG, Y., FU, Y.F., YAO, J., 2019. Mechanism and application on sulphidizing flotation of copper oxide with combined collectors. T. Nonferr. Metal. Soc. 29, 178−185.
  • ZHOU, L.G., 2007. Ore Mineralogy Bases, The Third Edition [M]. Beijing: Metallurgical Industry Press, 20−91.
Uwagi
The financial support from General Program of National Natural Science Foundation of China (No. 51874072), the National Natural Science Foundation of China (No. 51504053), and the Fundamental Research Funds for the Central Universities (No. N170107013), the National Natural Science Foundation of China (No. 51804081), the Found of State Key Laboratory of Mineral Processing (No.BGRIMM-KJSKL-2017-14).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-131b1bb6-6b22-41a1-bd5d-f354fe895cc7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.