PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Neural-sliding mode augmented robust controller for autolanding of fixed wing aircraft

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Neural and sliding mode controllers are generally based on the principle of nonlinear dynamic inversion. This leads to control signals containing high frequency components. This can result in actuator rate limiting due to loss of phase at higher frequencies. Large control inputs, for example due to the saturation component of the sliding mode controller can also result in position saturation of the actuator. In this paper we show that by the introduction of suitable phase compensators and an antiwindup scheme the neuralaided sliding mode controller performance can be improved. A novel scheme is proposed for the cascaded feedback controller which addresses practical requirements of both state limiting and control surface saturation respectively.
Rocznik
Strony
317--330
Opis fizyczny
Bibliogr. 17 poz., rys.
Twórcy
autor
  • Scientists, Flight Mechanics and Control Division, CSIR-National Aerospace Laboratories Bangalore – 560017, India
  • Scientists, Flight Mechanics and Control Division, CSIR-National Aerospace Laboratories Bangalore – 560017, India
autor
  • Dept. of Instrumentation and Control Engg., National Institute of Technology CityTiruchirappalli, India
  • School of Electrical & Electronic Engineering Nanyang Technological University, Singapore 639798
Bibliografia
  • [1] B. S. Kim, and A. J. Calise., “Nonlinear flight control using neural networks,” Journal of Guidance, Control and Dynamics, 20(1), 1997.
  • [2] W. Zhang, “Control of a High Performance Aircraft by Using H∞ Theory and Neural-Fuzzy Concepts,” M. Engg. Thesis, School of EEE, NTU Singapore, 1997.
  • [3] Y. Li, N. Sundararajan, and P. Sarathchandran, “Neuro-controller design for nonlinear fighter aircraft maneuver using fully tuned RBF networks,” Automatica, vol. 37, pp. 1293-1301, 2001.
  • [4] Y. Li, N. Sundararajan, P. Saratchandran, and Z. Wang, “ Robust neuro-H∞ controller design for aircraft autolanding,” IEEE Trans. on Aerospace and Electronic Systems, vol. 40, no. 1, pp.158-167, January 2004.
  • [5] A. A. Pashilkar, N. Sundararajan., and P. Saratchandran, “A fault-tolerant neural aided controller for aircraft autolanding,” Aerospace Science & Technology, vol. 10, pp. 49-61, 2006.
  • [6] Z. Wang and G. Xiong, “Neuro-aided H2 controller design for aircraft under actuator failure,” in Proc. of the 2011 2nd Intl. Congress on Computer Applications and Computational Science, vol. 2, 2011.
  • [7] H. Alwi, “Fault Tolerant Sliding Mode Control Schemes with Aerospace Applications,” Ph.D. Thesis, University of Leicester, UK, 2008.
  • [8] S. Ismail, A. A. Pashilkar, and R. Ayyagari, “Guaranteed stability and improved performance against actuator failures using neural-aided sliding mode controller for autolanding task,” in Proc. IFAC-EGNAC 2012 Workshop, IISc Bangalore, 13-15 Feb. 2012.
  • [9] R. M. Sanner and J-J E. Slotine, “Gaussian Networks for Direct Adaptive Control”, IEEE Trans. on Neural Networks, vol. 3 no. 6, pp.837-863, November 1992.
  • [10] V. V. Patel, C. Cao, N. Hovakimyan, K. A. Wise, and E. Lavretsky, “L1 Adaptive controller for tailless unstable aircraft in the presence of unknown actuator failures,” Intl. Jl. of Control, 82(4), 705-720, 2009.
  • [11] T. Lee and Y. Kim, “Nonlinear adaptive flight control using backstepping and neural networks controller, “ J. Guid., Contr., Dynam., 24(4), 2001.
  • [12] D. -H. Shin, and Y. Kim, ”Reconfigurable Flight Control System Design Using Adaptive Neural Networks,” IEEE Trans. on Control System Technology, 12, 87-100, 2004.
  • [13] S. Ismail, A. A. Pashilkar, R. Ayyagari and N. Sundararajan, “Improved Autolanding Controller for Aircraft Encountering Unknown Actuator Failures,” in Proc. CISDA 2013, Singapore, 16-19 April 2013, in press.
  • [14] G. Hovmark and G. Duus, “Experimental Evaluation of Phase Compensating Rate Limiters in an Aircraft’s Lateral Flight Control System”, TP-120-04, Group for Aeronautical Research and Technology in Europe, August 2001.
  • [15] J. Brindley, J. M. Counsell, O. S. Zaher and J. G. Pearce, “Design and simulation of a non-linear, discontinuous, flight control system using rate actuated inverse dynamics”, Proc. IMechE Part G:,J. of Aerospace Engineering, 0(0) 1-15, 2012.
  • [16] S. G. Teo, Autolanding System Study: Aerodynamic Data on an Aircraft with Independent Control Surfaces by CFD, Technical Report of DSO National Lab., Singapore, 2003.
  • [17] Y. Li, N. Sundararajan, and P. Saratchandran, “Neuro-flight controllers for aircraft using minimal resource allocating networks (MRAN). Neural Computing & Applications, 10, 172-183, 2001.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-13196685-2c08-4fce-997c-147996ff7926
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.