Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The feasibility of using laccase from Trametes versicolor for degradation of aromatic hydrocar-bons has been investigated. In the experiments, benzo[a]pyrene (BaP) was used. Laccase was immobilized onto mesoporous micelle-templated silica such as Santa Barbara Amorphous (SBA-15) and hexagonal mesoporous silica (HMS) as well as corresponding amino-functionalized supports. The best results were obtained for SBA-15 mesoporous silica however the HMS support could be as well considered for this type of application. The reusability of laccase immobilized into both silica supports was tested for five reaction cycles and the conversion reached about 70% of the initial value.
Czasopismo
Rocznik
Tom
Strony
81--95
Opis fizyczny
Bibliogr. 25 poz., tab., rys.
Twórcy
autor
- Faculty of Mathematics and Natural Sciences, Department of Chemistry, University of Craiova
autor
- Faculty of Mathematics and Natural Sciences, Department of Chemistry, University of Craiova
autor
- Faculty of Mathematics and Natural Sciences, Department of Chemistry, University of Craiova
autor
- Institute of Physical Chemistry, Romanian Academy of Sciences, Bucharest, Romania
autor
- National Institute of Research and Development for Biological Sciences, Center of Bioanalysis, Bucharest, Romania
Bibliografia
- [1] MURESEANU M., CIOATERA N., TRANDAFIR I., GEORGESCU I., FAJULA F., GALARNEAU A., Selective Cu2+ adsorption and recovery from contaminated water using mesoporous hybrid silica bioadsorbents, Micropor. Mesopor. Mat., 2011, 146 (1–3), 141.
- [2] BURTON S.G., Laccases and phenol oxidases in organic synthesis. A review, Curr. Org. Chem., 2003, 7 (13), 1317.
- [3] YANG S., HAI F.I., NGHIEM L.D., PRICE W.E., RODDICK F., MOREIRA M.T., MAGRAM S.F., Understanding the factors controlling the removal of trace organic contaminants by white-rot fungi and their lignin modifying enzymes. A critical review, Bioresour. Technol., 2013, 141, 97.
- [4] WITAYAKRAN S., RAGAUSKAS A.J., Synthetic applications of laccase in green chemistry, Adv. Synth. Catal., 2009, 351, 1187.
- [5] DURAN N., ROSA M.A., D’ANNIBALE A., GIANFREDA L., Applications of laccase and tyrosinases (phenoloxidases) immobilized on different supports: a review, Enzyme Microb. Technol., 2002, 31, 907.
- [6] DODOR D.E., HWANG H.-M., EKUNWE S.I.N., Oxidation of anthracene and benzo[a]pyrene by immobilized laccase from Trametes versicolor, Enzyme Microb. Technol., 2004, 35 (2–3), 210.
- [7] HU X., ZHAO X., HWANG H.-M., Comparative study of immobilized Trametes versicolor laccase on nanoparticles and kaolinite, Chemosphere, 2007, 66 (9), 1618.
- [8] MOHAMMADI A., NASERNEJAD B., Enzymatic degradation of anthracene by the white rot fungus Phanerochaete chrysosporium immobilized on sugarcane bagasse, J. Hazard. Mater., 2009, 161 (1), 534.
- [9] RIVA S., Laccases. Blue enzymes for green chemistry, Trends Biotechnol., 2006, 24, 219.
- [10] RODRIGUEZ COUTO S., TOCA-HERRERA J.L., Industrial and biotechnological applications of laccases. A review, Biotechnol. Adv., 2006, 24, 500.
- [11] FERNÁNDEZ-FERNÁNDEZ M., SANROMÁN Á.M., MOLDES D., Recent developments and applications of immobilized laccase, Biotechnol. Adv., 2013, 31, 1808.
- [12] JIANG D.-S., LONG S.-Y., HUANG J., XIAO H.-Y., ZHOU J.-Y., Immobilization of Pycnoporus sanguineus laccase on magnetic chitosan microspheres, Biochem. Eng. J., 2005, 25 (1), 15.
- [13] REKUĆ A., BRYJAK J., SZYMAŃSKA K., JARZĘBSKI A.B., Laccase immobilization on mesostructured cellular foams affords preparations with ultra high activity, Process. Biochem., 2009, 44 (2), 191.
- [14] NAIR R.R., DEMARCHE P., AGATHOS S.N., Formulation and characterization of immobilized laccase biocatalyst and application to eliminate organic micropollutants in wastewater, New Biotechnol., 2012, 30 (6), 814.
- [15] NIU J., DAI Y., GUO H., XU J., SHEN Z., Adsorption and transformation of PAHs from water by laccase-loading spider-type reactor, J. Hazard. Mater., 2013, 248–249, 254.
- [16] HOU J., DONG G., YE Y., CHEN V., Laccase immobilization on titania nanoparticles and titania-functionalized membranes, J. Membrane Sci., 2014, 452, 229.
- [17] SZYMAŃSKA K., BRYJAK J., MROWIEC-BIAŁOŃ J., JARZĘBSKI A.B., Application and properties of sili-ceous mesostructured cellular foams as enzymes carriers to obtain efficient biocatalysts, Micropor. Mesopor. Mater., 2007, 99, 167.
- [18] ZHAO D., FENG J., HUO Q., MELOSH N., FREDRICKSON G.H., CHMELKA B.F., STUCKY G.D., Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores, Science, 1998, 279 (5350), 548.
- [19] TANEV P.T., PINAVAIA T.J., Mesoporous silica molecular sieves prepared by ionic and neutral surfactant templating. A comparison of physical properties, Chem. Mater., 1996, 8 (8), 2068.
- [20] MARTIN T., GALARNEAU A., BRUNEL D., IZARD V., HULEA V., BLANC A.C., ABRAMSON S., DI RENZO F., FAJULA F., Towards total hydrophobisation of MCM-41 type silica surface, Stud. Surf. Sci. Catal., 2001, 135, 4621.
- [21] BRADFORD M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 1976, 72 (1–2), 248.
- [22] PAULY T.R., PINNAVAIA T.J., Pore size modification of mesoporous HMS molecular sieve silicas with wormhole framework structures, Chem. Mater., 2001, 13 (3), 987.
- [23] SHAKEEL A.A., QAYYUM H., Potential applications of enzymes immobilized on/in nano materials. A review, Biotechn. Adv., 2012, 30, 512.
- [24] SALIS A., PISANO M., MONDUZZI M., SOLINAS V., SANJUST E., Laccase from Pleurotus sajor-caju on functionalised SBA-15 mesoporous silica. Immobilisation and use for the oxidation of phenolic compounds, J. Mol. Catal. B: Enzym., 2009, 58 (1–4), 175.
- [25] CAO L., Immobilised enzymes: science or art?, Curr. Opin. Chem. Biol., 2005, 9 (2), 217.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1316ba82-3dc0-4f9c-95d3-4a016e43edda