Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The numerical simulation of the heat transfer in the flow channels of the minichannel heat exchanger was carried out. The applied model was validated on the experimental stand of an air heat pump. The influence of louver heights was investigated in the range from 0 mm (plain fin) to 7 mm (maximum height). The set of simulations was prepared in Ansys CFX. The research was carried out in a range of air inlet velocities from 1 to 5 m/s. The values of the Reynolds number achieved in the experimental tests ranged from 93 to 486. The dimensionless factors, the Colburn factor and friction factor, were calculated to evaluate heat transfer and pressure loss, respectively. The effectiveness of each louver height was evaluated using the parameter that relates to the heat transfer and the pressure drop in the airflow. The highest value of effectiveness (1.53) was achieved by the louver height of 7 mm for the Reynolds number of around 290.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
119--141
Opis fizyczny
Bibliogr. 22 poz., rys.
Twórcy
autor
- Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland
autor
- Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland
autor
- Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland
autor
- Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland
autor
- Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland
Bibliografia
- [1] Boeng J., Marcon A.A., Hermes C.J.L.: Air-side heat transfer and pressure drop characteristics of microchannel evaporators for household refrigerators. Int. J. Heat Mass Transf. 147(2020), 2, 118913.
- [2] Huang Z., Ling J., Hwang Y., Aute V., Radermacher R.: Airside heat transfer and friction characteristics of a 0.8 mm diameter bare tube heat exchanger. Heat Transf. Eng. 41(2019), 8, 1–11.
- [3] Srisomba R., Asirvatham L.G., Mahian O., Dalkilic A.S., Awad M.M., Wongwises S.: Air-side performance of a micro-channel heat exchanger in wet surface conditions. Therm. Sci. 21(2017), 1, 375–385.
- [4] Dogan B.I., Altun Ö., Ugurlubilek N., Tosun M., Sariçay T., Erbay L.B.: An experimental comparison of two multi-louvered fin heat exchangers with different numbers of fin rows. Appl. Therm. Eng. 91(2015), 12, 270–278.
- [5] Prabakaran R., Dhasan L.M., Prabhakaran A., Jha K.K.: Experimental investigations on the performance enhancement using minichannel evaporator with integrated receiver-dryer condenser in an automotive air conditioning system. Heat Transf. Eng. 40(2018), 2, 667–678.
- [6] Vaisi A., Esmaeilpour M., Taherian H.: Experimental investigation of geometry effects on the performance of a compact louvered heat exchanger. Appl. Therm. Eng.31(2011), 11, 3337–3346.
- [7] Ribeiro F., de Conde K., Garcia E.C., Nascimento I.P.: Heat transfer performance enhancement in compact heat exchangers by the use of turbulators in the inner side. Appl. Therm. Eng. 173(2020), 6, 115188.
- [8] Ayad F., Benelmir R., Idris M.: Thermal-hydraulic experimental study of louvered fin-and-flat-tube heat exchanger under wet conditions with variation of inlet humidity ratio. Appl. Therm. Eng. 183(2021), 1, 116218.
- [9] Cao X., Wang X., Song Q., Wang D., Li Y.: Experimental investigation on the heat transfer and pressure drop characteristics of R600a in a minichannel condenser with different inclined angles. Appl. Therm. Eng. 196(2021), 9, 117227.
- [10] Yue C., Zhang Q., Zhai Z., Ling L.: CFD simulation on the heat transfer and flow characteristics of a microchannel separate heat pipe under different filling ratios. Appl. Therm. Eng. 139(2018), 7, 25–34.
- [11] Qian Z., Wang Q., Cheng J., Deng J.: Simulation investigation on inlet velocity profile and configuration parameters of louver fin. Appl. Therm. Eng. 138(2018), 6, 173–182.
- [12] Saleem A., Kim M.H.: CFD analysis on the air-side thermal-hydraulic performance of multi-louvered fin heat exchangers at low Reynolds numbers. Energies 10(2017), 6, 823.
- [13] Shinde P., Schäfer M., Lin C.: Numerical investigation of micro-channeled louver fin aluminum heat exchangers at low Reynolds number. ASME 2016 Heat Transfer Summer Conf., Washington 2016.
- [14] Karthik P., Kumaresan V., Velraj R.: Experimental and parametric studies of a louvered fin and flat tube compact heat exchanger using computational fluid dynamics. Alex. Eng. J. 54(2015), 4, 905–915.
- [15] Dezan D.J., Salviano L.O., Yanagihara J.I.: Interaction effects between parameters in a flat-tube louvered fin compact heat exchanger with delta-winglets vortex generators. Appl. Therm. Eng. 91(2015), 12, 1092–1105.
- [16] Kang H., Hyejung C., Kim J. H., Jacobi A.M.: Air-side heat transfer performance of louver fin and multi-tube heat exchanger for fuel-cell cooling application. J. Fuel Cell Sci. Technol. 11(2014), 4, 041004.
- [17] Martínez-Ballester S., Corberán J.M., Gonzálvez-Maciá J.: Numerical model for microchannel condensers and gas coolers: Part II – Simulation studies and model comparison. Int. J. Refrig. 36(2013), 1, 191–202.
- [18] Kumar R., Vijayaraghavan S., Govindaraj D.: Numerical and analytical approach to study condensation for automotive heat exchangers. Mater. Today: Proc. 52(2022),3, 556–564.
- [19] Kowalczyk M.J., Łęcki M., Romaniak A., Warwas B., Gutkowski A.N.: Investigations of thermal-flow characteristics of minichannel evaporator of air heat pump. Archiv. Thermodyn. 41(2021), 4, 261–279.
- [20] Kang H., Jun G.W.: Heat transfer and flow resistance characteristics of louver fin geometry for automobile applications. J. Heat Transf. 133(2011), 10, 101802.
- [21] Yun J.Y., Lee K.S.: Influence of design parameters on the heat transfer and flow friction characteristics of the heat exchanger with slit fins. Int. J. Heat Mass Transf. 43(2000), 7, 2529–2539.
- [22] Ansys, Inc. Ansys CFX-Pre User’s Guide. 2021.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-130ecabb-f786-411b-9f1c-59e9e7f030a1