PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The importance of volume changes in the determination of soil water retention curves on the East Slovakian Lowland

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Estimation and application of water retention curves in heavy soils have own specifics. The reason for these specific properties is the composition of the high clay texture. This is manifested by volume changes of soil depending on moisture. Up to 40% change in the volume compared to the saturated state was recorded in the conditions of the East Slovakian Lowland. The results described in this work are based on research work carried out in the East Slovakian Lowland and represent an analysis of selected 42 samples out of a total of 250 samples in which laboratory measurements of soil water retention curves and volume changes were performed. Selected samples represent the localities Senné and Poľany. Volumetric changes were measured in a laboratory by measuring the dimensions of soil samples. Appropriate changes in the volume of soil samples should be measured when determining moisture retention curves. Neglecting this physical effect leads to a distorted determination of the water retention curves in heavy soils. In the laboratory measurement of water retention curves points, changes in the volume of the sample were measured in the range of 0.24–43.67% depending on the soil moisture potential during drainage. In the case of neglecting the effect of shrinkage during the drainage of samples, a certain error is occurring in the calculation of the volumetric moisture. The range of this error was 1–13% of volumetric moisture.
Wydawca
Rocznik
Tom
Strony
54--60
Opis fizyczny
Bibliogr. 32 poz., fot., rys., tab.
Twórcy
  • Slovak Academy of Sciences, Institute of Hydrology, Dúbravská cesta 9, 841 04, Bratislava, Slovak Republic
  • Slovak Academy of Sciences, Institute of Hydrology, Dúbravská cesta 9, 841 04, Bratislava, Slovak Republic
Bibliografia
  • BETHUNE M., TURRAL H. 2001. Modelling water movement in cracking soils: A review, in Modelling water movement in cracking soils. Eds. M. Bethune, M. Kirby. Dept. Natural Resources and Environment, Victoria, Melbourne pp. 29.
  • BOOLTINK H.W.G., HATANO R., BOUMA J. 1993. Measurement and simulation of bypass flow in a structured clay soil: A physico-morpological approach. Journal of Hydrology. No. 148 p. 149–168. DOI 10.1016/0022-1694(93)90257-A.
  • BRONSWIJK J.J.B. 1988. Effect of swelling and shrinkage on the calculation of water balance and water transport in clay soils. Agricultural Water Management. Vol. 14. Iss. 1–4 p. 185–193. DOI 10.1016/0378-3774(88)90073-X.
  • BRONSWIJK J.J.B. 1990. Shrinkage geometry of a heavy clay soil at various stresses. Soil Science Society of America Journal. Vol. 54. No. 5 p. 1500–1502. DOI 10.2136/sssaj1990. 03615995005400050048x.
  • BRONSWIJK J.J.B. 1991a. Magnitude, modelling and significance of swelling and shrinkage processes in clay soils. PhD thesis. Wageningen. Wageningen Agricultural University pp. 145.
  • BRONSWIJK J.J.B. 1991b. Relation between vertical soil movement and water – content changes in cracking clays. Soil Science Society America Journal. Vol. 55. No. 5 p. 1220–1226. DOI 10.2136/sssaj1991.03615995005500050004x.
  • BRONSWIJK J.J.B., EVERS VERMEER J.J. 1990. Shrinkage of Dutch clay soil aggregates. Netherlands Journal of Agricultural Science. Vol. 38. No. 2 p. 175–194.
  • COOLS N., DE VOS B. 2009. 1st FSCC soil physical ring test 2009. Action C1-Soil-3(Fl). Soil Moisture Work-shop. Freising, 25–26.03.2009. Available at: https://www.google. pl/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwijwKyD66_nAhXN8qYKHUvKAUMQFjAAegQIAhAB&url=http%3A%2F%2Fwww.futmon.org%2Fd2_05_soilphysicalringtest2009_coolsdevos.pdf&usg=AOvVaw2q-mRqd0M4XO0-Y1JOJwGR
  • FEDDES R.A., KABAT P., BAKEL VAN P.J. T., BRONSWIJK J.J.B., HALBERTSMA J. 1988. Modelling soil water dynamics in the unsaturated zone-state of the art. Journal of Hydrology. Vol. 100. Iss. 1–3 p. 69–111. DOI 10.1016/0022-1694(88)90182-5.
  • GOMBOŠ M., TALL A., KANDRA B. 2009. Creation of soil cracks as an indicator of soil drought. Cereal Research Communications. Vol. 37. Suppl. p. 367–370.
  • GROSSMAN R.B., BRASHER B.R., FRANZMEIER D.P., WALKER J.L. 1968. Linear extensibility as calculated from natural-clod bulk density measurements. Soil Science Society America Journal. Vol. 32. No. 4 p. 570–573. DOI 10.2136/sssaj1968. 03615995003200040041x.
  • ISO 11274:1998 Soil quality – Determination of the water retention characteristics – Laboratory methods [online]. Geneva, Switzerland. International Organization for Standardization pp. 20. [Access 14.05.2019]. Available at: http://www.iso.ch
  • JAMEI M., GUIRAS H., MOKNI N. 2007. A retention curve predic-tion for unsaturated clay soils. Ed. T. Schanz. Experimental Unsaturated Soil Mechanics. Springer Proceedings in Physics. Vol. 112. Berlin–Heidelberg. DOI 10.1007/3-540-69873-6_38.
  • KATEB Z., BOUCHELKIA H., BENMANSOUR A., BELARBI F. 2019. Hydrological modelling using the SWAT model based on two types of data from the watershed of Beni Haroun dam, Algeria. Journal of Water and Land Development. No. 43 (X–XII) p. 76–89. DOI 10.2478/jwld-2019-0065.
  • KOPKA J., SEDLÁK Š. 1973. Soline soils in the East – Slovakia Lowland. 3rd Czechoslovak soil science conference. Nitra. VŠP p. 71–67.
  • MAJERČÁK J., NOVÁK V. 1994. GLOBAL one-dimensional variable saturated flow model, including root water uptake, evapotranspiration structure, corn yield, interception of precipitations and winter regime calculation: Research Report. Bratislava. Institute of Hydrology S.A.S. pp. 75.
  • MAULEM Y. 1976. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resources Research. Vol. 12. Iss. 3 p. 513–522. DOI 10.1029/WR012i003 p00513.
  • NOVÁK V. 1999. Soil-crack characteristics – estimation methods applied to heavy soils in the NOPEX area. Agricultural and Forest Meteorology. Vol. 98–99 p. 501–507. DOI 10.1016/ S0168-1923(99)00119-7.
  • NOVÁK V., ŠIMUNEK J., VAN GENUCHTEN M.T. 2000. Infiltration of water into soil with cracks. Journal of Irrigation and Drainage Engineering. Vol. 126. No. 1 p. 41–47. DOI 10.1061/ (ASCE)0733-9437(2000)126:1(41).
  • OLESZCZUK, R., SZATYŁOWICZ J., BRANDYK, T., GNATOWSKI T. 2000. An analysis of the influence of shrinkage on water retention characteristics of fen peat-moorsh soil. Suo. Vol. 51 (3) p. 139–147.
  • OOSTINDIE K., BRONSWIJK J.J.B. 1992. FLOCR – A simulation model for the calculation of water balance, cracking and surface subsidence of clay soils: Report 47. Wageningen. The Winand Staring Centre for Integrated Land, Soil and Water Research pp. 65.
  • PARKER J.C., AMOS D.F., KASTER D.L. 1977. An evaluation of several methods of estimating soil volume change. Soil Science Society of America Journal. Vol. 41. No. 6 p. 1059–1064. DOI 10.2136/sssaj1977.03615995004100060008x.
  • PENG X., HORN R., SMUCKER A. 2007. Pore shrinkage dependency of inorganic and organic soils on wetting and drying cycles. Soil Science Society America Journal. Vol. 71. No. 4 p. 1095–1104. DOI 10.2136/sssaj2006.0156.
  • SCHAFER W.M., SINGER M.J. 1976. Influence of physical and mineralogical properties on swelling of soils in Yolo County, California. Soil Science Society of America Journal. Vol. 40. No. 4 p. 557–562. DOI 10.2136/sssaj1976. 03615995004000040029x.
  • ŠIMŮNEK J., ŠEJNA M., SAITO H., SAKAI M., VAN GENUCHTEN M. TH. 2013. The Hydrus-1D Software Package for Simulating the Movement of Water, Heat, and Multiple Solutes in Variably Saturated Media, Version 4.17, HYDRUS Software Series 3, Department of Environmental Sciences, University of California Riverside, Riverside, California, USA pp. 342.
  • ŠOLTÉSZ A., BAROKOVÁ D., ČERVEŇANSKÁ M., JANÍK A. 2016. Hydrodynamic analysis of interaction between river flow and ground water. 16th International Multidisciplinary Scientific GeoConference SGEM 2016, www.sgem.org, SGEM2016 Conference Proceedings. June 28–July 6, 2016. Book 1. Vol. 1 p. 823–830. DOI 10.5593/SGEM2016/B11/S02.104.
  • TALL A. 2007. Impact of canopy on the water storage dynamics in soil. Cereal Research Communications. Vol. 35. No. 2 p. 1185–1188.
  • TALL A. 2008. Application of the palmer drought severity index in east Slovakian lowland. Cereal Research Communications. Vol. 36. No. 1 p. 1195–1198.
  • TALL A., GOMBOŠ M. 2005. Simulation of extreme rainfall influence on the water regime of unsaturated zone [CD]. Geophys-ical Research Abstracts. Vienna. European Geosciences Union. Vol. 7.
  • TARIQ A.U.R., DURNFORD D.S. 1997. Moisture retention of a swelling soil under capillary and overburden pressures. Journal of Hydrology. Vol. 203. Iss. 1–4 p. 119–126. DOI 10.1016/S0022-1694(97)00089-9.
  • VAN GENUCHTEN M.Th. 1980. A closed – form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society America Journal. Vol. 44. No. 5 p. 892–898. DOI 10.2136/sssaj1980.03615995004400050002x.
  • VITKOVÁ J., KONDRLOVÁ E., RODNÝ M., ŠURDA P., HORÁK J. 2017. Analysis of soil water content and crop yield after biochar application in field conditions. Plant, Soil and Environment. Vol. 63. No. 12 p. 569–573.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-13098ba6-9469-44d0-9ce2-1b13dbbd8d67
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.