PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of pulse laser treatment at different process variables on mechanical behavior of carbon nanotubes electrophoretically deposited on titanium alloy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Titanium and its alloys are widely used as biomaterials for long-term implants, but they are usually surface-modified due to their weak bioactivity and wear resistance. Laser processing was used to modify the surface layer, and elemental carbon was a component of the deposited coatings. This research aims to use a combination of both methods based on preliminary electrophoretic deposition of multi-wall carbon nanotubes (MWNCTs) followed by pulse laser treatment. Carbon nanotubes were chosen due to their mechanical and chemical stability as well as their tubular shape, resulting in enhanced mechanical properties of laser-modified layers. Methods: The pulse laser power and laser scanning speed were defined as variable process parameters. The microstructure, roughness Ra, nanohardness H, Young’s modulus E, and indent depth values were measured, and the H/E, H 3 /E2 , and relative changes of all these values in comparison to MWCNTs-coated and non-coated surfaces, were calculated. Results: The obtained results show that the best mechanical properties of MWCNTs-coated and laser-treated specimens are obtained at a laser power of 900 W and laser feed of 6 mm/s. The observed relations can be explained considering processes occurring on the surface such as deposition of carbon nanotubes, melting and re-crystallization of the surface layer, formation and possible partial decomposition of titanium carbides, and associated changes in local chemical composition, phase composition, and a level of residual stresses beneath the surface. Conclusions: The developed process can substitute the time and money-consuming carbonization of titanium and its alloys.
Rocznik
Strony
157--168
Opis fizyczny
Bibliogr. 39 poz., rys., tab., wykr.
Twórcy
  • Gdańsk University of Technology, Faculty of Mechanical Engineering and Ship Technology, Department of Biomaterials Technology, Gdańsk, Poland.
  • Gdańsk University of Technology, Faculty of Mechanical Engineering and Ship Technology, Department of Biomaterials Technology, Gdańsk, Poland.
  • Gdańsk University of Technology, Faculty of Mechanical Engineering and Ship Technology, Department of Biomaterials Technology, Gdańsk, Poland.
Bibliografia
  • [1] ABDAL-HAY A., STAPLES R., ALHAZAA A., FOURNIER B., AL-GAWATI M., LEE R.S., IVANOVSKI S., Fabrication of micropores on titanium implants using femtosecond laser technology: Perpendicular attachment of connective tissues as a pilot study, Opt. Laser Technol., 2022, 148, 107624, https://doi.org/10.1016/ j.optlastec.2021.107624
  • [2] ALKALLAS F.H., AHMED H.A., ADEL PASHAMEAH R., ALREFAEE S.H., TOGHAN A., BEN GOUIDER TRABELSI A., MOSTAFA A.M., Nonlinearity enhancement of Multi-walled carbon nanotube decorated with ZnO nanoparticles prepared by laser assisted method, Opt. Laser Technol., 2022, 155, 108444, https://doi.org/10.1016/j.optlastec.2022.108444
  • [3] BAHIRAEI M., MAZAHERI Y., SHEIKHI M., HEIDARPOUR A., Mechanism of TiC formation in laser surface treatment of the commercial pure titanium pre-coated by carbon using PVD process, J. Alloys Compd., 2020, 834, 155080, https://doi.org/ 10.1016/j.jallcom.2020.155080
  • [4] AL BAROOT A., ELSAYED K.A., HALADU S.A., MAGAMI S.M., ALHESHIBRI M., ERCAN F., ÇEVIK E., AKHTAR S., A.MANDA A., KAYED T.S., ALTAMIMI N.A., ALSANEA A.A., AL-OTAIBI A.L., One-pot synthesis of SnO2 nanoparticles decorated multi-walled carbon nanotubes using pulsed laser ablation for photocatalytic applications, Opt. Laser Technol., 2023, 157, 108734, https:// doi.org/10.1016/j.optlastec.2022.108734
  • [5] CAI Q., LI G., WU B., XU S., WANG L., GUO Y., Effect of TiC content on microstructure and properties of TiC / Ni60 coatings on Ti6Al4V alloy deposited by laser cladding, Opt. Laser Technol., 2024, 168, 109854, https://doi.org/10.1016/ j.optlastec.2023.109854.
  • [6] CHAUHAN A.S., JHA J.S., TELRANDHE S., V S., GOKHALE A.A., MISHRA S.K., Laser surface treatment of α-β titanium alloy to develop a β -rich phase with very high hardness, J. Mater. Process. Technol., 2021, 288, 116873, https://doi.org/10.1016/ j.jmatprotec.2020.116873
  • [7] CHEN X., DU Y., CHUNG Y.-W., Commentary on using H/E and H3/E2 as proxies for fracture toughness of hard coatings, Thin Solid Films, 2019, 688, 137265, https://doi.org/doi.org/ 10.1016/j.tsf.2019.04.040
  • [8] CHENG J., WANG S., TANG S., ZHOU J., CAO Z., WU D., LIU C., LI Y., Controllable construction of laser-induced colorful patterns based on thermal energy transfer between carbon nanotubes substrate and polymer interface, Appl. Surf. Sci., 2023, 610, 155591, https://doi.org/10.1016/j.apsusc.2022.155591
  • [9] DAI F., ZHANG Z., REN X., LU J., HUANG S., Effects of laser shock peening with contacting foil on micro laser texturing surface of Ti6Al4V, Opt. Lasers Eng., 2018, 101, 99–105, https:// doi.org/10.1016/j.optlaseng.2017.09.024
  • [10] DOU H. QIANG, LIU H., XU S., CHEN Y., MIAO X., LÜ H., JIANG X., Influence of laser fluences and scan speeds on the morphologies and wetting properties of titanium alloy, Optik (Stuttg.), 2020, 224, 165443, https://doi.org/10.1016/ j.ijleo.2020.165443
  • [11] GERASIMENKO A.Y., KURILOVA U.E., SAVELYEV M.S., MURASHKO D.T., GLUKHOVA O.E., Laser fabrication of composite layers from biopolymers with branched 3D networks of single-walled carbon nanotubes for cardiovascular implants, Compos. Struct., 2021, 260, 113517, https://doi.org/10.1016/ j.compstruct.2020.113517
  • [12] GOPI D., SHINYJOY E., SEKAR M., SURENDIRAN M., KAVITHA L., SAMPATH KUMAR T.S., Development of carbon nanotubes reinforced hydroxyapatite composite coatings on titanium by electrodeposition method, Corros. Sci., 2013, 73, 321–330, https://doi.org/10.1016/j.corsci.2013.04.021
  • [13] GORODETSKIY D.V., KURENYA A.G., GUSEL’NIKOV A.V., BASKAKOVA K.I., SMIRNOV D.A., ARKHIPOV V.E., BULUSHEVA L.G., OKOTRUB A.V., Laser beam patterning of carbon nanotube arrays for the work of electron field emitters in technical vacuum, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., 2020, 262, 114691, https://doi.org/10.1016/ j.mseb.2020.114691
  • [14] GUO C., ZHANG M., HU J., Fabrication of hierarchical structures on titanium alloy surfaces by nanosecond laser for wettability modification, Opt. Laser Technol., 2022, 148, 107728. https://doi.org/10.1016/j.optlastec.2021.107728
  • [15] GUO Y., XU L., LUAN J., WAN Y., LI R., Effect of carbon nanotubes additive on tribocorrosion performance of micro-arc oxidized coatings on Ti6Al4V alloy, Surfaces and Interfaces. 2022, 28, 101626, https://doi.org/10.1016/j.surfin.2021.101626
  • [16] HAN X., MA J., TIAN A., WANG Y., LI Y., DONG B., TONG X., MA X., Surface modification techniques of titanium and titanium alloys for biomedical orthopaedics applications: A review, Colloids Surfaces B Biointerfaces, 2023, 227, 113339, https://doi.org/10.1016/j.colsurfb.2023.113339
  • [17] KATAHIRA K., EZURA A., OHKAWA K., KOMOTORI J., OHMORI H., Generation of bio-compatible titanium alloy surfaces by laserinduced wet treatment, CIRP Ann. – Manuf. Technol., 2016, 65, 237–240, https://doi.org/10.1016/j.cirp.2016.04.053
  • [18] KUCZYŃSKA-ZEMŁA D., PURA J., PRZYBYSZEWSKI B., PISAREK M., GARBACZ H., A comparative study of apatite growth and adhesion on a laser-functionalized titanium surface, Tribol. Int., 2023, 182, 108338, https://doi.org/10.1016/ j.triboint.2023.108338
  • [19] KÜMMEL D., LINSLER D., SCHNEIDER R., SCHNEIDER J., Surface engineering of a titanium alloy for tribological applications by nanosecond-pulsed laser, Tribol. Int., 2020, 150, 106376, https://doi.org/10.1016/j.triboint.2020.106376
  • [20] MAJKOWSKA-MARZEC B., ROGALA-WIELGUS D., BARTMAŃSKI M., BARTOSEWICZ B., ZIELIŃSKI A., Comparison of Properties of the Hybrid and Bilayer MWCNTs – Hydroxyapatite Coatings on Ti Alloy, Coatings, 2019, 9, 1–13.
  • [21] MAJKOWSKA-MARZEC B., SYPNIEWSKA J., Microstructure and Mechanical Properties of Laser Surface-Treated Ti13Nb13Zr Alloy with MWCNTs Coatings, Adv. Mater. Sci., 2021, 21, 5–18, https://doi.org/10.2478/adms-2021-0021
  • [22] MAJKOWSKA-MARZEC B., TECZAR P., BARTMAŃSKI M., BARTOSEWICZ B., JANKIEWICZ B.J., Mechanical and corrosion properties of laser surface-treated Ti13Nb13Zr alloy with MWCNTs coatings, Materials (Basel), 2020, 13, https:// doi.org/10.3390/ma13183991
  • [23] MAKURAT-KASPROLEWICZ B., OSSOWSKA A., Recent advances in electrochemically surface treated titanium and its alloys for biomedical applications: A review of anodic and plasma electrolytic oxidation methods, Mater. Today Commun., 2023, 34, 105425, https://doi.org/10.1016/ j.mtcomm.2023.105425
  • [24] MARCHEWKA J., JELEŃ P., DŁUGOŃ E., SITARZ M., BŁAŻEWICZ M., Spectroscopic investigation of the carbon nanotubes and polysiloxane coatings on titanium surface, J. Mol. Struct., 2020, 1212, https://doi.org/10.1016/ j.molstruc.2020.128176
  • [25] PETRONIĆ S., ČOLIĆ K., ĐORĐEVIĆ B., MILOVANOVIĆ D., BURZIĆ M., VUČETIĆ F., Effect of laser shock peening with and without protective coating on the microstructure and mechanical properties of Ti-alloy, Opt. Lasers Eng., 2020, 129, https://doi.org/10.1016/j.optlaseng.2020.106052
  • [26] ROGALA-WIELGUS D., MAJKOWSKA-MARZEC B., ZIELIŃSKI A., BARTMAŃSKI M., JANKIEWICZ B.J., Mechanical behavior of bi-layer and dispersion coatings composed of several nanostructures on Ti13Nb13Zr alloy, Materials (Basel), 2021, 14, 2905, https://doi.org/doi.org/10.3390/ ma14112905
  • [27] RONOH K., MWEMA F., DABEES S., SOBOLA D., Advances in sustainable grinding of different types of the titanium biomaterials for medical applications: A review, Biomed. Eng. Adv., 2022, 4, 100047, https://doi.org/10.1016/j.bea.2022.100047
  • [28] SHIRAZI H.A., CHAN C.W., LEE S., Elastic-plastic properties of titanium and its alloys modified by fibre laser surface nitriding for orthopaedic implant applications, J. Mech. Behav. Biomed. Mater., 2021, 124, 104802, https://doi.org/10.1016/ j.jmbbm.2021.104802
  • [29] SŁOMA M., WIERZBICKI M., SKALSKI A., Composite powders with carbon nanotubes for laser printing of electronics, Microelectron. Reliab., 2022, 136, https://doi.org/10.1016/ j.microrel.2022.114718.
  • [30] SUN P., HU X., WEI G., WANG R., WANG Q., WANG H., WANG X., Ti3O5 nanofilm on carbon nanotubes by pulse laser deposition: Enhanced electrochemical performance, Appl. Surf. Sci., 2021, 548, https://doi.org/10.1016/ j.apsusc.2021.149269
  • [31] WANG Q., FANG B., LIU C., TU S.S., CHA L., RAMACHANDRAN C.S., Characterization of plasma electrolytic oxidation coatings containing carbon nanotubes formed on selective laser melted AlSi10Mg alloy, Surf. Coatings Technol., 2023, 454, 129145, https://doi.org/10.1016/j.surfcoat.2022.129145
  • [32] WEISHEIT A., RITTINGHAUS S.K., DUTTA A., MAJUMDAR J.D., Studies on the effect of composition and pre-heating on microstructure and mechanical properties of direct laser clad titanium aluminide, Opt. Lasers Eng., 2020, 131, 106041, https://doi.org/10.1016/j.optlaseng.2020.106041
  • [33] XU B., JIANG P., WANG Y., ZHAO J., GENG S., Formation mechanism of aluminum and its carbides under wobbling laser melting injection with carbon nanotubes-SiC hybrid particles, J. Mater. Process. Technol., 2023, 319, 118059, https:// doi.org/10.1016/j.jmatprotec.2023.118059
  • [34] YAN C., BOR B., PLUNKETT A., DOMÈNECH B., SCHNEIDER G.A., GIUNTINI D., Nanoindentation of Supercrystalline Nanocomposites: Linear Relationship Between Elastic Modulus and Hardness, Jom., 2022, 74, 2261–2276, https://doi.org/10.1007/ s11837-022-05283-3
  • [35] YANAN L., RONGLU S., WEI N., TIANGANG Z., YIWEN L., Effects of CeO2 on microstructure and properties of TiC/Ti 2 Ni reinforced Ti-based laser cladding composite coatings, Opt. Lasers Eng., 2019, 120, 84–94, https://doi.org/10.1016/ j.optlaseng.2019.03.001 [36] YIN H., YANG J., ZHANG Y., CRILLY L., JACKSON R.L., LOU X., Carbon nanotube (CNT) reinforced 316L stainless steel composites made by laser powder bed fusion: Microstructure and wear response, Wear, 2022, 496–497, 204281, https://doi.org/ 10.1016/j.wear.2022.204281
  • [37] YU A. HUA, XU W., LU X., TAMADDON M., LIU B. WEN, TIAN S. WEI, ZHANG C., MUGHAL M.A., ZHANG J. ZHEN, LIU C. ZONG, Development and characterizations of graded porous titanium scaffolds via selective laser melting for orthopedics applications, Trans. Nonferrous Met. Soc. China (English Ed.), 2023, 33, 1755–1767, https://doi.org/10.1016/ S1003-6326(23)66219-3.
  • [38] YU Z., ZHANG J., HU J., Study on surface properties of nanosecond laser textured plasma nitrided titanium alloy, Mater. Today Commun., 2022, 31, 103746, https://doi.org/10.1016/ j.mtcomm.2022.103746.
  • [39] ZHOU J.Z., HUANG S., ZUO L.D., MENG X.K., SHENG J., TIAN Q., HAN Y.H., ZHU W.L., Effects of laser peening on residual stresses and fatigue crack growth properties of Ti6Al-4V titanium alloy, Opt. Lasers Eng., 2014, 52, 189–194, https://doi.org/10.1016/j.optlaseng.2013.06.011.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1308558e-62fc-4f63-9df8-2a8f68c41497
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.