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Abstract 

The paper presents a brief description of the Abaqus Simulia plane stress 

quadrilateral elements (CPS4R, CPS4I, CPS4, CPS8R, CPS8). Comparison 

of the results quality obtained using each of them was done. There was 

considered two dimensional big displacements compression test for a highly 

orthotropic material. Simulations were performed for the compression in two 

perpendicular directions.  

 

 

1. INTRODUCTION 

 

Abaqus Simulia software makes many finite elements available to its users. 

The basic problem is the criterion of choosing an appropriate element to the specific 

investigation. 

The paper presents the description of five plane stress quadrilateral elements 

available in Abaqus. Brief outline of nodes, degrees of freedom and the Lagrange 

polynomial shape functions was done (Zienkiewicz 2000, Bathe 2014, Liu 2014). 

The paper provides a comparison of the results obtained for a highly orthotropic 

material using each of elements in a big displacements compression test. 

Constitutive law for the material was defined basing on (Jones 1999, Lekhnitskii 

1981). The general aim of the numerical experiment was the need of determination 

element's suitability for usage in the analyses, where considerable distortion of the 

elements is anticipated. The problem of oversize distortion was raised in several 

papers (Macneal 1985, Barlow 1989, Lee 1993). 
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As a report from numerical analyses there was specified σ11 and σ22 stress 

distribution in dependence on element type, direction of compressing and applied 

mesh. Modelling and mesh study was based on the scientific papers (Turcke 1974, 

Cecil 1994). Additionally, there were prepared diagrams of P-δ relation to notice 

any discontinuities or disturbances in the model. Basing on the numerical results 

there were made general conclusions and recommendations for using the Abaqus 

plane stress quadrilateral elements with highly orthotropic materials. 

 

 

2. ELEMENTS DESCRIPTION 

 

The simplest elements are 4-node bilinear plane stress quadrilateral elements, 

which are presented in Fig.1. 

  

 

Fig. 1. Linear geometric order (first order) plane stress elements 

(author's study basing on Abaqus User's Manual) 

The difference between CPS4 and CPS4I is an occurrance of the additional 

internal degrees of freedom preventing the element from overly stiff behavior  

in bending, called shear locking. The phenomenon is more precisely described  

in (Cook 2002) and Abaqus User's Manual. 

 

 

Fig. 2. 4-node element shape functions based on Lagrange polynomials 
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General functions describing work of the finite elements are the shape func-

tions (Zienkiewicz 2000, Bathe 2014, Liu 2014). In most cases they are based on 

Lagrange polynomials. Defining coordinate system using η and ξ axes, shape 

functions may be written as it was shown in Fig.2. Denotations u and v describe 

nodal translation degrees of freedom. More complex elements are 8-node biquadratic 

plane stress quadrilateral elements, which are presented in Fig.3. 

 

 

Fig. 3. Quadratic geometric order (second order) plane stress elements 

 (author's study basing on Abaqus User's Manual) 

Defining coordinate system as before, using η and ξ axes, shape functions may 

be written as it was shown in Fig.4. Denotations u and v describe nodal translation 

degrees of freedom. 

 

 

Fig. 4. 8-node element shape functions based on Lagrange polynomials 

In both 4-node and 8-node elements the equation given below is met: 

 

1
1




n

i

iN  (1) 

  



 

59 

Displacement field is described by formula: 
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In both elements types there are considered reduced and full integration modes. 

Reduced integration provides lower computational cost in the numerical analysis, 

but on the other hand may lead to the lower quality of the results. These aspects 

will be discussed in the next paragraph. 
 

 

3. COMPRESSION TEST FEM MODEL 
 

There were prepared two numerical models with different local coordinate 

systems orientations. For highly orthotropic materials, orientation of the specimen 

is crucial for obtained stresses and strains values. 

Fig. 5. a) presents set of compression in a longitudinal direction, and Fig. 5. b) 

set of compression in a transversal direction. Predicted results of the stresses 

distribution should be completely different from each other. 

 

 

Fig. 5. Compression test with different local coordinate systems orientation:  

a) longitudinal compression, b) transversal compression 
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Compressing steel parts were modeled as rigid bodies to prevent them from 

deformations. Lower support was fixed in the reference point, upper steel plate 

was constrained in the horizontal direction and in the plane rotation. There was 

added constant vertical displacement of the upper steel plate and frictional contact 

between the specimen and steel plates. 

There were two mesh sizes taken into account: 16 elements and 64 elements, 

which is presented in Fig.6. 

 

 
Fig. 6. Number of finite elements used in the numerical simulation 

For both directions of compression there was added the same vertical displace-

ment δ = 5 mm. 
 

4. NUMERICAL RESULTS 

 

Numerical results contain comparison of the elements behaviour under big 

displacement compression and description of σ11 and σ22 stresses distribution  

in the specimen. Expected values σ11 stresses were much higher than σ22 because 

of a great difference in the elastic modules depending on the direction. For better 

understanding work of the whole specimen there were made diagrams with P-δ 

relation. Results for mesh with 16 elements are shown in Fig.7–11. 

 

 

Fig. 7. CPS4R elements displacements, σ11, σ22 stresses distribution and P-δ relation 
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Fig. 8. CPS4I elements displacements,  σ11, σ22 stresses distribution and P-δ relation  

 
Fig. 9. CPS4 elements displacements, σ11, σ22 stresses distribution and P-δ relation 

 

Fig. 10. CPS8R elements displacements, σ11, σ22 stresses distribution and P-δ relation   

 

Fig. 11. CPS8 elements displacements, σ11, σ22 stresses distribution and P-δ relation 

CPS8 presented the most precise results. Comparing other elements to the CPS8 

it was visible that CPS8R and CPS4 gave accurate results while CPS4I and CPS4R 

gave inaccurate results in σ11 direction, due to the excessive elements distortion.  
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Additionally, for CPS4R element, analysis convergence ends in about 80%  

of the analysis progress and the shape of the elements is unphysical. P-δ relation 

diagrams clearly shows the disturbances in the whole model caused by CPS4R 

and CPS4I elements, while for CPS4, CPS8R and CPS8 relation is smooth. 

General principal to get the proper results from the numerical model was 

considering lower and higher mesh density. Only then an interpretation of the results 

might be correct. Because of that there was prepared the second mesh with 64 finite 

elements in the specimen. This approach allowed to find out how mesh density 

influence the solution. Results of the investigation are presented in Fig.12–16. 

 

 

Fig. 12. CPS4R elements displacements, σ11, σ22 stresses distribution and P-δ relation  

 

Fig. 13. CPS4I elements displacements, σ11, σ22 stresses distribution and P-δ relation 

The same as in case of 16 elements mesh, there were visible inaccurate stress 

results for CPS4R and CPS4I. It seemed that mesh density had a low influence  

on the elements work. There was a visible progress in proper stress distribution 

range in case of CPS4R elements, however after reaching some stress limit, these 

elements behaviour was still unphysical. 

 

 

Fig. 14. CPS4 elements displacements, σ11, σ22 stresses distribution and P-δ relation 
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Fig. 15. CPS8R elements displacements, σ11, σ22 stresses distribution and P-δ relation  

 

Fig. 16. CPS8 elements displacements, σ11, σ22 stresses distribution and P-δ relation 

 

5. CONCLUSIONS 

 

Basing on the performed numerical analyses there were made several conclusions 

about using Abaqus plane stress quadrilateral elements. 

CPS4R and CPS4I elements were recommended only to use with small 

displacements and linear problems. Nonlinearity would probably cause similar 

inadequate effects as an orthotropic material as presented in the paper. In case of these 

finite elements, making mesh more dense may have no influence on getting better 

numerical results. 

CPS4 elements gave the same good results in the compression as CPS8R  

and CPS8 elements. However it was worth to remember that shear locking occurs 

in CPS4 elements. 

The best solution for almost all of the plane stress problems are second order 

quadrilateral elements CPS8R and CPS8, which give proper results in com-

pression, big displacements, works well with highly orthotropic materials and with 

bending. 

The author's study provides precise information about how the Abaqus plane 

stress elements work under compression. It is a very important case for a further 

research. There are planned several numerical modelling validations in dela-

mination and damage processes in highly orthotropic materials. It is possible only 

when accurate results are provided by the finite elements. 
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