PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Raman Spectroscopy Analysis of the Morphology of Gold Nanoparticles Produced by Laser Ablation in Aqueous Proteinogenic Amino Acid for the Detection of Mercury in Water

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The objective of the research was to analyze by Raman spectroscopy the morphology of gold nanoparticles generated by laser ablation in L-Cysteine of purity ≥ 97% dissolved in ultrapure water for the detection by color change of mercury dissolved in water. Three samples of 10 ml of ultrapure water were prepared with aggregation of 10 ul of L-Cysteine with concentrations of 1, 10 and 20 mM; the generation of the gold nanoparticles was by laser ablation with a wavelength λ = 1064 nm, energy of 60.28 mJ/p located at 30 cm from the convex lens generating ablation at 10 cm on a gold plate of dimensions 10×15 mm with thickness of 1 mm, for 30 min. The gold nanoparticles generated in these aqueous environments were characterized by Raman spectroscopy using a laser with a sensitivity of 785 nm with Raman Shift analysis range 860–3200 cm-1 and controlled power at 499 mW. The nanoparticles presented maximum peak resonance around Raman Shift 1164.96 cm-1 and 1288.06 cm-1. With the AuNPs + L-Cysteine sample with concentration of 10 mM, the author proceeded to the detection of Hg2+ prepared in 20 μl of ultrapure water at concentrations of 0.1, 5 and 10 μM; when adding 100 μl of AuNPs + L-Cysteine two peak absorbance spectra were obtained with different amplitudes observed by UV–Vis spectroscopy, indicating that Hg2+ decreased the repulsion of the negatively charged AuNPs, generating the visible color change for the three concentrations of Hg2+ with 25 minutes of agitation, turning intense purple for 10 μM of Hg2+; enabling the detection of mercury in water.
Słowa kluczowe
Rocznik
Strony
169--175
Opis fizyczny
Bibliogr. 31 poz., rys.
Twórcy
  • Instituto de Investigación de Ciencias de Ingeniería, Facultad de Ingeniería Electrónica-Sistemas, Universidad Nacional de Huancavelica, Jr. La Mar 755, Pampas 09156, Huancavelica, Perú
Bibliografia
  • 1. Al-Kinani, M.A., Haider, A.J., Al-Musawi, S. 2021. Design and synthesis of nanoencapsulation with a new formulation of Fe@ Au-CS-CU-FA NPs by pulsed laser ablation in liquid (PLAL) method in breast cancer therapy: in vitro and in vivo. Plasmonics, 16(4), 1107–1117. https://doi.org/10.1007/s11468–021–01371–3
  • 2. Annadhasan, M., Muthukumarasamyvel, T., Sankar Babu, V.R., Rajendiran, N. 2014. Green Synthesized Silver and Gold Nanoparticles for Colorimetric Detection of Hg2+, Pb2+, and Mn2+ in Aqueous Medium. ACS Sustainable Chemistry & Engineering, 2(4), 887–896. https://doi.org/10.1021/sc400500z
  • 3. Avantes. 2018. Espectrómetro UV-Vis-NIR – AvaSpec-ULS2048x64-EVO. https://www.medicalexpo.com/prod/avantes/product-104219–950813.html
  • 4. Avantes. 2020. AvaRaman Bundles. https://www.avantes.com/products/raman/avaraman-bundles/
  • 5. Aveiga, A., Pinargote, C., Peñarrieta, F., Teca, J., Alcántara, F. 2022. Adsorption of Mercury and Zinc in Agricultural Soils by Sphagneticola trilobata. Journal of Ecological Engineering, 23(3), 230–235. https://doi.org/10.12911/22998993/146115
  • 6. Barone, G., Storelli, A., Meleleo, D., Dambrosio, A., Garofalo, R., Busco, A., Storelli, M.M. 2021. Levels of mercury, methylmercury and selenium in fish: Insights into children food safety. Toxics, 9(2), 39. https://doi.org/10.3390/toxics9020039
  • 7. Bayda, S., Adeel, M., Tuccinardi, T., Cordani, M., Rizzolio, F. 2019. The history of nanoscience and nanotechnology: from chemical–physical applications to nanomedicine. Molecules, 25(1), 112. https://doi.org/10.3390/molecules25010112
  • 8. Budianta, W., Ardiana, A., Andriyani, N.D., Fahmi, F.L. 2020. Impact of mercury contamination by artisanal mining on soil and the use of natural zeolite for stabilization. IOP Conference Series: Earth and Environmental Science, 479(1), 12020. https://doi.org/10.1088/1755–1315/479/1/012020
  • 9. Carbajal-Morán, H., Rivera-Esteban, J.M., Aldama-Reyna, C.W., Mejía-Uriarte, E.V. 2022. Functionalization of Gold Nanoparticles for the Detection of Heavy Metals in Contaminated Water Samples in the Province of Tayacaja. Journal of Ecological Engineering, 23(9), 88–99. https://doi.org/10.12911/22998993/151745
  • 10. Choudhury, K., Srivastava, A., Singh, R.K., Kumar, A. 2022. Laser-produced plasma: Fabrication of size-controlled metallic nanoparticles. In Plasma at the Nanoscale (pp. 37–61). Elsevier. https://doi.org/10.1016/B978–0-323–89930–7.00005–4
  • 11. Chow, T.H., Li,N., Bai, X., Zhuo, X., Shao, L., Wang, J. 2019. Gold nanobipyramids: An emerging and versatile type of plasmonic nanoparticles. Accounts of Chemical Research, 52(8), 2136–2146. https://doi.org/10.1021/acs.accounts.9b00230
  • 12. Darbha, G.K., Singh, A.K., Rai, U.S., Yu, E., Yu, H., Chandra Ray, P. 2008. Selective Detection of Mercury (II) Ion Using Nonlinear Optical Properties of Gold Nanoparticles. Journal of the American Chemical Society, 130(25), 8038–8043. https://doi.org/10.1021/ja801412b
  • 13. Hammami, I., Alabdallah, N.M. 2021. Gold nanoparticles: Synthesis properties and applications. Journal of King Saud University-Science, 33(7), 101560. https://doi.org/10.1016/j.jksus.2021.101560
  • 14. Hano, C., Abbasi, B.H. 2021. Plant-based green synthesis of nanoparticles: Production, characterization and applications. In Biomolecules. MDPI, 12(1), 31. https://doi.org/10.3390/biom12010031
  • 15. Jamkhande, P.G., Ghule, N.W., Bamer, A.H., Kalaskar, M.G. 2019. Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. Journal of Drug Delivery Science and Technology, 53, 101174. https://doi.org/10.1016/j.jddst.2019.101174
  • 16. Khamcharoen, W., Henry, C.S., Siangproh, W. 2022. A novel L-cysteine sensor using in-situ electropolymerization of L-cysteine: Potential to simple and selective detection. Talanta, 237, 122983. https://doi.org/10.1016/j.talanta.2021.122983
  • 17. Khan, F.A. 2020. Nanomaterials: types, classifications, and sources. Applications of Nanomaterials in Human Health, 1–13. https://doi.org/10.1007/978–981–15–4802–4_1
  • 18. Kumar, R., Kumar, M., Chohan, J.S. 2021. The role of additive manufacturing for biomedical applications: A critical review. Journal of Manufacturing Processes, 64, 828–850. https://doi.org/10.1016/j.jmapro.2021.02.022
  • 19. Kumar, R., Kumar, M., Luthra, G. 2023. Fundamental approaches and applications of nanotechnology: A mini review. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2022.12.172
  • 20. Lensoni, L., Adlim, M., Kamil, H., Karma, T., Suhendrayatna, S. 2023. Identification and Correlation Test of Mercury Levels in Community Urine at Traditional Gold Processing Locations. Journal of Ecological Engineering, 24(3), 357–365. https://doi.org/10.12911/22998993/159062
  • 21. Quantel. 2019. Q-smart 450 Pulsed Nd:YAG Laser, 213 to 1064nm, 8 to 450mJ, Product – Photonic Solutions, UK. https://www.photonicsolutions.co.uk/product-detail.php?prod=6345
  • 22. Saravanan, A., Kumar, P.S., Karishma, S., Vo, D.-V.N., Jeevanantham, S., Yaashikaa, P.R., George, C.S. 2021. A review on biosynthesis of metal nanoparticles and its environmental applications. Chemosphere, 264, 128580. https://doi.org/10.1016/j.chemosphere.2020.128580
  • 23. Sarfraz, N., Khan, I. 2021. Plasmonic gold nanoparticles (AuNPs): properties, synthesis and their advanced energy, environmental and biomedical applications. Chemistry–An Asian Journal, 16(7), 720–742. https://doi.org/10.1002/asia.202001202
  • 24. Seth, R. 2020. L-cysteine functionalized gold nanoparticles as a colorimetric sensor for ultrasensitive detection of toxic metal ion cadmium. Materials Today: Proceedings, 24, 2375–2382. https://doi.org/10.1016/j.matpr.2020.03.767
  • 25. Shih, C.-Y., Shugaev, M.V, Wu, C., Zhigilei, L.V. 2020. The effect of pulse duration on nanoparticle generation in pulsed laser ablation in liquids: insights from large-scale atomistic simulations. Physical Chemistry Chemical Physics, 22(13), 7077–7099. https://doi.org/10.1039/D0CP00608D
  • 26. Slepička, P., Slepičková Kasálková, N., Siegel, J., Kolská, Z., Švorčík, V. 2019. Methods of gold and silver nanoparticles preparation. Materials, 13(1), 1. https://doi.org/10.3390/ma13010001
  • 27. Torrisi, L., Cutroneo, M., Silipigni, L., Barreca, F., Fazio, B., Restuccia, N., Kovacik, L. 2018. Gold nanoparticles produced by laser ablation in water and in graphene oxide suspension. Philosophical Magazine, 98(24), 2205–2220. https://doi.org/10.1080/14786435.2018.1478147
  • 28. Vardè, M., Barbante, C., Barbaro, E., Becherini, F., Bonasoni, P., Busetto, M., Calzolari, F., Cozzi, G., Cristofanelli, P., Dallo, F. 2022. Characterization of atmospheric total gaseous mercury at a remote high-elevation site (Col Margherita Observatory, 2543 m asl) in the Italian Alps. Atmospheric Environment, 271, 118917. https://doi.org/10.1016/j.atmosenv.2021.118917
  • 29. Vasudevan, A., Shvalya, V., Košiček, M., Zavašnik, J., Jurov, A., Santhosh, N.M., Zidanšek, A., Cvelbar, U. 2022. From faceted nanoparticles to nanostructured thin film by plasma-jet redox reaction of ionic gold. Journal of Alloys and Compounds, 928, 167155. https://doi.org/10.1016/j.jallcom.2022.167155
  • 30. Yang, L., Zhang, Y., Wang, F., Luo, Z., Guo, S., Strähle, U. 2020. Toxicity of mercury: Molecular evidence. Chemosphere, 245, 125586. https://doi.org/10.1016/j.chemosphere.2019.125586
  • 31. Zhu, S., Meng, H., Gu, Z., Zhao, Y. 2021. Research trend of nanoscience and nanotechnology–A bibliometric analysis of Nano Today. Nano Today, 39, 101233. https://doi.org/10.1016/j.nantod.2021.101233
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1306a7e4-b5a6-4859-95ba-882d97c8c286
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.