PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Nonlinear coupled moving-load excited dynamics of beam-mass structures

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Investigated in this paper is the first on the moving-load-caused nonlinear coupled dynamics of beam-mass systems. A constant value load excites the beam-mass system where its position on the beam-mass system changes periodically. The energy contribution of the moving load is included via a virtual work formulation. The kinetic energy of the mass together with the beam as well as energy stored in the beam after deflection is formulated. Hamilton’s principle gives nonlinear equations of the beam-mass system under a moving load in a coupled transverse/longitudinal form. A weighted-residual-based discretisation gives a 20 degree of freedom which is numerically integrated via continuation/time integration along with Floquet theory techniques. The resonance dynamics in time, frequency, and spatial domains is investigated. As we shall see, torus bifurcations are present for some beam-mass structure parameters as well as travelling waves. A finite element analysis is performed for a simpler linear version of the problem for to-some-extend verifications.
Rocznik
Strony
207--217
Opis fizyczny
Bibliogr. 19 poz., rys., wykr.
Twórcy
  • School of Mechanical Engineering, University of Adelaide, Adelaide, SA 5005, Australia
autor
  • Department of Mechanical and Construction Engineering, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
autor
  • School of Mechanical Engineering, University of Adelaide, Adelaide, SA 5005, Australia
autor
  • School of Mechanical Engineering, University of Adelaide, Adelaide, SA 5005, Australia
Bibliografia
  • [1] Polus Ł, Szumigała M. An experimental and numerical study of aluminium–concrete joints and composite beams. Arch Civil Mech Eng. 2019;19:375–90.
  • [2] Domagalski Ł. Free and forced large amplitude vibrations of periodically inhomogeneous slender beams. Arch Civil Mech Eng. 2018;18:1506–19.
  • [3] Mohanty A, Prasad Varghese M, Kumar BR. Coupled nonlinear behavior of beam with a moving mass. Appl Acoust. 2019;156:367–77.
  • [4] Dimitrovová Z. Complete semi-analytical solution for a uniformly moving mass on a beam on a two-parameter visco-elastic foundation with non-homogeneous initial conditions. Int J Mech Sci. 2018;144:283–311.
  • [5] Esen I. Dynamic response of a functionally graded Timoshenko beam on two-parameter elastic foundations due to a variable velocity moving mass. Int J Mech Sci. 2019;153–154:21–35.
  • [6] Roy S, Chakraborty G, DasGupta A. On the wave propagation in a beam-string model subjected to a moving harmonic excitation. Int J Solids Struct. 2019;162:259–70.
  • [7] Yang D-S, Wang C. Dynamic response and stability of an inclined Euler beam under a moving vertical concentrated load. Eng Struct. 2019;186:243–54.
  • [8] Yang Y, Kunpang K, Lam C, Iu V. Dynamic behaviors of tapered bi-directional functionally graded beams with various boundary conditions under action of a moving harmonic load. Eng Anal Boundary Elem. 2019;104:225–39.
  • [9] Sarparast H, Ebrahimi-Mamaghani A. Vibrations of laminated deep curved beams under moving loads. Compos Struct. 2019;226:111262.
  • [10] Farokhi H, Ghayesh MH. Nonlinear motion characteristics of microarches under axial loads based on modified couple stress theory. Arch Civil Mech Eng. 2015;15:401–11.
  • [11] Sitar M, Kosel F, Brojan M. Large deflections of nonlinearly elastic functionally graded composite beams. Arch Civil Mech Eng. 2014;14:700–9.
  • [12] Pradhan KK, Chakraverty S. Static analysis of functionally graded thin rectangular plates with various boundary supports. Arch Civil Mech Eng. 2015;15:721–34.
  • [13] Toscano CR, Simőes FMF, da Costa PA. Moving loads on beams on Winkler foundations with passive frictional damping devices. Eng Struct. 2017;152:211–25.
  • [14] Chen Y, Fu Y, Zhong J, Tao C. Nonlinear dynamic responses of fiber-metal laminated beam subjected to moving harmonic loads resting on tensionless elastic foundation. Compos B Eng. 2017;131:253–9.
  • [15] Zupan E, Zupan D. Dynamic analysis of geometrically non-linear three-dimensional beams under moving mass. J Sound Vib. 2018;413:354–67.
  • [16] Khurshudyan AZ, Ohanyan SK. Vibration suspension of Euler-Bernoulli-von Kármán beam subjected to oppositely moving loads by optimizing the placements of visco-elastic dampers. ZAMM Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik. 2018;98:1412–9.
  • [17] Farokhi H, Ghayesh MH, Hussain S. Large-amplitude dynamical behaviour of microcantilevers. Int J Eng Sci. 2016;106:29–41.
  • [18] Ghayesh MH. Dynamical analysis of multilayered cantilevers. Commun Nonlinear Sci Numer Simul. 2019;71:244–53.
  • [19] Ghayesh MH, Farokhi H, Gholipour A, Tavallaeinejad M. Nonlinear bending and forced vibrations of axially functionally graded tapered microbeams. Int J Eng Sci. 2017;120:51–62.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-13049d0d-fed2-4b3a-b57a-cbbc14451e4c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.