PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microstructure and properties of CuCr0.6 and CuFe2 alloys after rolling with the cyclic movement of rolls

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work is focused on the effect of rolling with cyclic movement of rolls (RCMR) on microstructure, mechanical properties and electrical conductivity of CuCr0.6 and CuFe2 alloys in states after applying different heat treatments. The mechanical properties were determined by using MST QTest/10 machine equipped with digital image correlation (DIC). Scanning transmission electron microscopy (STEM) was used for microstructural characterization. The RCMR processed alloys shows high mechanical strength (UTS:539 MPa for CuCr0.6 alloy and UTS:393 MPa for CuFe2 alloy) attributed to the high density of coherent precipitates (after aging at 500 °C/2 h) and ultrafine grained structure. Plastically properties as uniform elongation (Agt) was about (∼1%) for both alloys after RCMR deformation. The RCMR processing induces a significant reduction of the electrical conductivity for samples, which were quenched before deformation, but for samples which were subjected to aging before deformation, the electrical conductivity was restored thanks to precipitation process.
Rocznik
Strony
500--507
Opis fizyczny
Bibliogr. 22 poz., rys., tab., wykr.
Twórcy
autor
  • Institute of Materials Science, Silesian University of Technology, Krasińskiego 8, 40-019 Katowice, Poland
  • Institute of Materials Science, Silesian University of Technology, Krasińskiego 8, 40-019 Katowice, Poland
  • Institute of Materials Science, Silesian University of Technology, Krasińskiego 8, 40-019 Katowice, Poland
Bibliografia
  • [1] S.V. Dobatkin, J. Gubicza, D.V. Shangina, N.R. Bochvar, N.R. Tabachkova, High strength and good electrical conductivity in Cu–Cr alloys processed by severe plastic deformation, Materials Letters 153 (2015) 5–9.
  • [2] R.K. Islamgaliev, K.M. Nesterov, J. Bourgon, Y. Champion, R.Z. Valiev, Nanostructured Cu–Cr alloy with high strength and electrical conductivity, Journal of Applied Physics 115 (2014) 194301–194304.
  • [3] W. He, Y. Yu, E. Wang, H. Sun, L. Hu, H. Chen, Microstructures and properties of cold drawn and annealed submicron crystalline Cu–5%Cr alloy, Transactions of Nonferrous Metals Society of China 19 (2009) 93–98.
  • [4] Z. Rdzawski, J. Stobrawa, W. Głuchowski, Structure and properties of CuFe2 alloy, Journal of Achievements in Materials and Manufacturing Engineering 33 (2009) 7–11.
  • [5] A. Korbel, W. Bochniak, A. Pawełek, Optymalizacja własności wytrzymałościowych i elektrycznych miedzi stopowych, Archiwum Hutnicze Tom 25 (1981) 253–275.
  • [6] J. Stobrawa, Z. Rdzawski, W. Głuchowski, W. Malec, Ultrafine grained of precipitation hardened copper alloys, Archives of Metallurgy and Materials 56 (2011) 171–179.
  • [7] H. Cao, J.Y. Min, S.D. Wu, A.P. Xian, J.K. Shang, Pinning of grain boundaries by second phase particles in equal-channel angularly pressed Cu–Fe–P alloy, Materials Science and Engineering A 431 (2006) 86–91.
  • [8] K.X. Wei, W. Wei, F. Wang, Q. Bu Do, I.V. Alexandrov, J. Hu, Microstructure, mechanical properties and electrical conductivity of industrial Cu–0.5%Cr alloy processed by severe plastic deformation, Materials Science and Engineering A528 (2011) 1478–1484.
  • [9] C.Z. Xu, Q.J. Wang, M.S. Zheng, J.W. Zhu, J.D. Li, M.Q. Huang, Q.M. Jia, Z.Z. Du, Microstructure and properties of ultra-fine grain Cu–Cr alloy prepared by equal-channel angular pressing, Materials Science and Engineering A459 (2007) 303–308.
  • [10] N. Guo, B. Song, H. Yu, R. Xin, B. wang, T. Liu, Enhancing tensile strength of Cu by intraducing gradient microstructures via a simple torsion deformation, Materials and Design 90 (2016) 545–550.
  • [11] K. Rodak, K. Radwański, R.M. Molak, Microstructure and mechanical properties of aluminium processed by multi-axial compression, Solid State Phenomena 176 (2011) 21–28.
  • [12] K. Rodak, R.M. Molak, Z. Pakieła, Structure and properties of copper after large strain deformation, Physica Status Solidi C-Current Topics in Solid State Physics 7 (2010) 1351– 1354.
  • [13] K. Rodak, J. Pawlicki, Effect of compression with oscillatory torsion processing on structure and properties of Cu, Journal of Materials Science and Technology 27 (2011) 1083–1088.
  • [14] Z. Cyganek, K. Rodak, F. Grosman, Influence of rolling process with induced strain path on aluminum structure and mechanical properties, Archives of Civil and Mechanical Engineering 13 (2013) 7–13.
  • [15] A. Urbańczyk-Gucwa, K. Rodak, A. Płachta, J. Sobota, Z. Rdzawski, Characteristic structure of Cu–0.8Cr alloy using SPD deformation by rolling with the cyclic movement of rolls, Key Engineering Materials 682 (2016) 3–9.
  • [16] F. Grosman, J. Pawlicki, A. Korbel, W. Bochniak, R. Kiełpiński, L. Tomecki, Sposób walcowania, zwłaszcza metali oraz klatka walcownicza do walcowania, zwłaszcza metali.
  • [17] R.M. Molak, K. Paradowski, T. Brynk, Ł. Ciupiński, Z. Pakieła, K.J. Kurzydłowski, Measurement of mechanical properties in a 316L stainless steel welded joint, International Journal of Pressure Vessels and Piping 86 (2009) 43–47.
  • [18] Z. Rdzawski, J. Stobrawa, W. Głuchowski, Structure and properties of CuFe2 alloy, Journal of Achievements in Materials and Manufacturing Engineering 33 (2009) 7–18.
  • [19] A. Korbel, W. Bochniak, A. Pawelek, Optymalization of strength and electric al properties of copper alloys, Archiwum Hutnictwa 26 (1981) 253–275.
  • [20] A. Urbańczyk-Gucwa, K. Radwański, K. Rodak, Influence of solution and aging treatment conditions on the formation of ultrafine-grained structure of CuFe2 alloy processed by rolling with cyclic movement of Rolls, Archives of Metallurgy and Materials 61 (2016) 1235–1240.
  • [21] K. Rodak, K. Radwański, Influence of precipitates on the grain refinement in CuFe2 alloy processed by rolling with cyclic movement of rolls, Materials and Design 110 (2016) 255–265.
  • [22] M. Shaarbaf, M.R. Toroghinejad, Nano-grained copper strip produced by accumulative roll bonding process, Materials Science and Engineering A 473 (2008) 28–33.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1303f904-e912-4c60-a4e7-4724159a67b4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.