Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Background: This paper is devoted to identifying supply chain management methods applicable within reverse supply chains of wood biomass. In general, sustainable supply chains are characterised by increased process efficiency. Reverse supply chains also require proper management. Hence it is necessary to verify the applicability of existing management methods and tools within chains of this type. This article is devoted to identifying management methods and tools that have the potential to be used in reverse supply chains of wood biomass. Particular emphasis was placed on the well-known green supply chain management approach (GrSC), the concept of Zero Waste Management, the product life cycle (LCA), cost-effectiveness, and environmental efficiency. The possibility of adopting the available methods in reverse wood biomass supply chains has been analysed with reference to the limitations and opportunities resulting from the methods used. Methods: The research was divided into two stages. In the first stage, an in-depth argumentative literature review (ALR) was performed to identify methods and tools suitable for implementation within reverse supply chains of wood biomass. The second stage outlined boundaries and possibilities for implementing management methods within reverse supply chains of wood biomass. Results: The study indicated the potential to implement available management solutions in reverse supply chains of wood biomass. However, it is necessary to consider the specificity of wood biomass material flows and the characteristic elements of supply chain infrastructure they require. Conclusions: The results show that sustainable supply chain management methods are suitable for use in reverse supply chains of wood biomass. It is necessary to consider the specific characteristics of wood biomass and the location of its acquisition points in existing supply chains. A number of limitations, related to the availability of data, their quality, the location of biomass sourcing locations and processing centres, and the degree of integration of internal processes resulting from the size of the company dealing with wood biomass processing, are identified.
Wydawca
Czasopismo
Rocznik
Tom
Strony
669--681
Opis fizyczny
Bibliogr. 50 poz.
Twórcy
autor
- Faculty of Engineering Management, Poznan University of Technology, Poznań, Poland
autor
- Łukasiewicz Research Network, Poznan Institute of Technology, Poznań, Poland 3Poznan School of Logistics, Poznań, Poland
Bibliografia
- 1. Abdullah, M. I., Sarfraz, M., Qun, W., and Javaid, N. [2018]. Drivers of green supply chain management. Logforum, 14(4), 437–447. https://doi.org/10.17270/J.LOG.2018.297
- 2. Abejón, R., Bala, A., Vázquez-Rowe, I., Aldaco, R., and Fullana-i-Palmer, P. [2020]. When plastic packaging should be preferred: Life cycle analysis of packages for fruit and vegetable distribution in the Spanish peninsular market. Resources, Conservation and Recycling, 155, 104666. https://doi.org/10.1016/j.resconrec.2019.10 4666
- 3. Amin, S. H., and Zhang, G. [2012a]. A proposed mathematical model for closed-loop network configuration based on product life cycle. The International Journal of Advanced Manufacturing Technology, 58(5–8), 791–801. https://doi.org/10.1007/s00170-011-3407-2
- 4. Amin, S. H., and Zhang, G. [2012b]. An integrated model for closed-loop supply chain configuration and supplier selection: Multi-objective approach. Expert Systems with Applications, 39(8), 6782–6791. https://doi.org/10.1016/j.eswa.2011.12.056
- 5. Barbosa-Póvoa, A. P. [2009]. Sustainable Supply Chains: Key Challenges. In Computer Aided Chemical Engineering (Vol. 27, pp. 127–132). https://doi.org/10.1016/S1570-7946(09)70242-1
- 6. Barker, T. J., and Zabinsky, Z. B. [2011]. A multicriteria decision making model for reverse logistics using analytical hierarchy process. Omega, 39(5), 558–573. https://doi.org/10.1016/j.omega.2010.12.002
- 7. Brandenburg, M., Govindan, K., Sarkis, J., and Seuring, S. [2014]. Quantitative models for sustainable supply chain management: Developments and directions. European Journal of Operational Research, 233(2), 299–312. https://doi.org/10.1016/j.ejor.2013.09.032
- 8. Brown, M. W. [2021]. Evaluation of the Impact of Timber Truck Configuration and Tare Weight on Payload Efficiency: An Australian Case Study. Forests, 12(7), 855. https://doi.org/10.3390/f12070855
- 9. Chen, J.-X., and Chen, J. [2017]. Supply chain carbon footprinting and responsibility allocation under emission regulations. Journal of Environmental Management, 188, 255–267. https://doi.org/10.1016/j.jenvman.2016.12.006
- 10. Condeixa, L. D., Silva, P., Moah, D., Farias, B., and Leiras, A. [2022]. Evaluating cost impacts on reverse logistics using an Economic Order Quantity (EOQ) model with environmental and social considerations. Central European Journal of Operations Research, 30(3), 921–940. https://doi.org/10.1007/s10100-020-00707-4
- 11. Cordella, M., Tugnoli, A., Spadoni, G., Santarelli, F., and Zangrando, T. [2008]. LCA of an Italian lager beer. The International Journal of Life Cycle Assessment, 13(2), 133–139. https://doi.org/10.1065/lca2007.02.306
- 12. Dahmus, J. B. [2014]. Can Efficiency Improvements Reduce Resource Consumption?: A Historical Analysis of Ten Activities. Journal of Industrial Ecology, 18(6), 883–897. https://doi.org/10.1111/jiec.12110
- 13. Danish, M., and Ahmad, T. [2018]. A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application. Renewable and Sustainable Energy Reviews, 87, 1–21. https://doi.org/10.1016/j.rser.2018.02.003
- 14. Dev, N. K., Shankar, R., and Qaiser, F. H. 2020]. Industry 4.0 and circular economy: Operational excellence for sustainable reverse supply chain performance. Resources, Conservation and Recycling,153, 104583. https://doi.org/10.1016/j.resconrec.2019.104583
- 15. Dubisz, D., Golińska-Dawson, P., and Koliński, A. [2022]. Measuring CO2 emissions level for more sustainable distribution in a supply chain. Engineering and Applied Science Research, 49, 804810. https://doi.org/10.14456/EASR.2022.78
- 16. Dujak, D., Šebalj, D., and Koliński, A. [2019]. Towards exploring bullwhip effects in natural gas supply chain. Logforum, 15(4), 557–569. https://doi.org/10.17270/J.LOG.2019.369
- 17. Egri, P., Dávid, B., Kis, T., and Krész, M. [2021]. Robust facility location in reverse logistics. Annals of Operations Research. https://doi.org/10.1007/s10479-021-04405-5
- 18. Elhedhli, S., and Merrick, R. [2012]. Green supply chain network design to reduce carbon emissions. Transportation Research Part D: Transport and Environment, 17(5), 370–379. https://doi.org/10.1016/j.trd.2012.02.002
- 19. Finnveden, G., Hauschild, M. Z., Ekvall, T., Guinée, J., Heijungs, R., Hellweg, S., Koehler, A., Pennington, D., and Suh, S. [2009]. Recent developments in Life Cycle Assessment. Journal of Environmental Management, 91(1), 1–21. https://doi.org/10.1016/j.jenvman.2009.06.018
- 20. Fleischmann, M., Bloemhof-Ruwaard, J. M., Dekker, R., van der Laan, E., van Nunen, J. A. E. E., and Van Wassenhove, L. N. [1997]. Quantitative models for reverse logistics: A review. European Journal of Operational Research, 103(1), 1–17. https://doi.org/10.1016/S0377-2217(97)00230-0
- 21. Freichel, S., Rütten, P., and Wörtge, J. [2022]. Challenges of supply chain visibility in distribution logistics: a literature review. Ekonomski Vjesnik, 35(2), 453–466. https://doi.org/10.51680/ev.35.2.16
- 22. Gaur, A., Gurjar, S. K., and Chaudhary, S. [2022]. Circular system of resource recovery and reverse logistics approach: key to zero waste and zero landfill. In Advanced Organic Waste Management (pp. 365–381). https://doi.org/10.1016/B978-0-323-85792-5.00008-3
- 23. Golinska-Dawson, P. [2019]. Materials management in remanufacturing of automotive components - a small remanufacturers perspective. IFAC-PapersOnLine, 52(13), 1738–1743. https://doi.org/10.1016/j.ifacol.2019.11.452
- 24. Govindan, K., Soleimani, H., and Kannan, D. [2015]. Reverse logistics and closed-loop supply chain: A comprehensive review to explore the future. European Journal of Operational Research, 240(3), 603–626. https://doi.org/10.1016/j.ejor.2014.07.012
- 25. Kannegiesser, M., and Günther, H.-O. [2014]. Sustainable development of global supply Chains-part 1: sustainability optimization framework. Flexible Services and Manufacturing Journal, 26(1–2), 24-47. https://doi.org/10.1007/s10696-013-9176-5
- 26. Kara, S., Rugrungruang, F., and Kaebernick, H. [2007]. Simulation modelling of reverse logistics networks. International Journal of Production Economics, 106(1), 61–69. https://doi.org/10.1016/j.ijpe.2006.04.009
- 27. Kawa, A. [2012]. SMART Logistics Chain. In J.-S. Pan, S.-M. Chen, and N. T. Nguyen (Eds.), Intelligent Information and Database Systems (pp. 432–438). https://doi.org/10.1007/978-3-642-28487-8_45
- 28. Kleindorfer, P. R., Singhal, K., and Wassenhove, L. N. [2009]. Sustainable Operations Management. Production and Operations Management, 14(4), 482–492. https://doi.org/10.1111/j.1937- 5956.2005.tb00235.x
- 29. Kolinski, A., Sliwczynski, B., and Golinska-Dawson, P. [2017]. The assessment of the economic efficiency of production process - Simulation approach. 24th International Conference on Production Research, 283-289.
- 30. Krstić, M., Agnusdei, G. P., Miglietta, P. P., Tadić, S., and Roso, V. [2022]. Applicability of Industry 4.0 Technologies in the Reverse Logistics: A Circular Economy Approach Based on Comprehensive Distance Based RAnking (COBRA) Method. Sustainability, 14(9), 5632. https://doi.org/10.3390/su14095632
- 31. McCullough, L. B., Coverdale, J. H., and Chervenak, F. A. [2004]. Argument-based medical ethics: A formal tool for critically appraising the normative medical ethics literature. American Journal of Obstetrics and Gynecology, 191(4), 1097–1102. https://doi.org/10.1016/j.ajog.2004.06.060
- 32. Melo, M. T., Nickel, S., and Saldanha da Gama, F. [2006]. Dynamic multi-commodity capacitated facility location: a mathematical modeling framework for strategic supply chain planning. Computers & Operations Research, 33(1), 181–208. https://doi.org/10.1016/j.cor.2004.07.005
- 33. Mierzwiak, R. [2023]. Selection of the Company’s Strategy Using Grey Stratified Decisions Model. In Y. Yang and S. Liu (Eds.), Emerging Studies and Applications of Grey Systems (pp. 297–312). https://doi.org/10.1007/978-981-19-3424-7_11
- 34. Miller, A., Dess, G. G., and Dess, G. G. [1996]. Strategic management (2nd ed). New York: McGraw-Hill. Mobini, M., Sowlati, T., and Sokhansanj, S. [2013]. A simulation model for the design and analysis of wood pellet supply chains. Applied Energy, 111, 1239–1249. https://doi.org/10.1016/j.apenergy.2013.06.026
- 35. Mogale, D. G., De, A., Ghadge, A., and Aktas, E. [2022]. Multi-objective modelling of sustainable closed-loop supply chain network with price-sensitive demand and consumer’s incentives. Computers & Industrial Engineering, 168, 108105. https://doi.org/10.1016/j.cie.2022.108105
- 36. Morrissey, A. J., and Browne, J. [2004]. Waste management models and their application to sustainable waste management. Waste Management, 24(3), 297–308. https://doi.org/10.1016/j.wasman.2003.09.005
- 37. Mukherjee, C., Denney, J., Mbonimpa, E. G., Slagley, J., and Bhowmik, R. [2020]. A review on municipal solid waste-to-energy trends in the USA. Renewable and Sustainable Energy Reviews, 119, 109512. https://doi.org/10.1016/j.rser.2019.109512
- 38. Murphy, F., Devlin, G., and McDonnell, K. [2014]. Forest biomass supply chains in Ireland: A life cycle assessment of GHG emissions and primary energy balances. Applied Energy, 116, 1–8. https://doi.org/10.1016/j.apenergy.2013.11.041
- 39. Reddy, K. N., Kumar, A., Choudhary, A., and Cheng, T. C. E. [2022]. Multi-period green reverse logistics network design: An improved Benders-decomposition-based heuristic approach. European Journal of Operational Research, 303(2), 735–752. https://doi.org/10.1016/j.ejor.2022.03.014
- 40. Redmer, A. [2022]. Facility Location Problem mathematical models - supply chain perspective. Logforum, 18(4), 379–395. https://doi.org/10.17270/J.LOG.2022.792
- 41. Rehl, T., and Müller, J. [2011]. Life cycle assessment of biogas digestate processing technologies. Resources, Conservation and Recycling, 56(1), 92–104. https://doi.org/10.1016/j.resconrec.2011.08.007
- 42. Seuring, S. [2013]. A review of modeling approaches for sustainable supply chain management. Decision Support Systems, 54(4), 1513–1520. https://doi.org/10.1016/j.dss.2012.05.053
- 43. Shabani, N., and Sowlati, T. [2013]. A mixed integer non-linear programming model for tactical value chain optimization of a wood biomass power plant. Applied Energy, 104, 353–361. https://doi.org/10.1016/j.apenergy.2012.11.013
- 44. Tao, Z., Zheng, Q., and Kong, H. [2018]. A Modified Gravity p-Median Model for Optimizing Facility Locations. 6, 421–434. https://doi.org/10.21078/JSSI-2018-421-14
- 45. Wang, C., Zhang, L., Zhou, P., Chang, Y., Zhou, D., Pang, M., and Yin, H. [2019]. Assessing the environmental externalities for biomass- and coal-fired electricity generation in China: A supply chain perspective. Journal of Environmental Management, 246, 758–767. https://doi.org/10.1016/j.jenvman.2019.06.047
- 46. Werner-Lewandowska, K., and Golinska-Dawson, P. [2021]. Sustainable Logistics Management Maturity-The Theoretical Assessment Framework and Empirical Results from Poland. Sustainability, 13(9), 5102. https://doi.org/10.3390/su13095102
- 47. Xu, Z., Elomri, A., Pokharel, S., Zhang, Q., Ming, X. G., and Liu, W. [2017]. Global reverse supply chain design for solid waste recycling under uncertainties and carbon emission constraint. Waste Management, 64, 358–370. https://doi.org/10.1016/j.wasman.2017.02.024
- 48. Zapp, M., Marques, M., and Powell, J. J. W. [2021]. Blurring the boundaries. University actorhood and institutional change in global higher education. Comparative Education, 57(4), 538–559. https://doi.org/10.1080/03050068.2021.1967591
- 49. Zhu, Q., and Sarkis, J. [2004]. Relationships between operational practices and performance among early adopters of green supply chain management practices in Chinese manufacturing enterprises. Journal of Operations Management, 22(3), 265–289. https://doi.org/10.1016/j.jom.2004.01.005
- 50. Zomparelli, F., Petrillo, L., Salvo, B. D., and Petrillo, A. [2018]. Re-engineering and Relocation of manufacturing process through a simulative and multicriteria decision model. IFAC-PapersOnLine, 51(11), 1649-1654. https://doi.org/10.1016/j.ifacol.2018.08.220
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1301c40e-a2ae-4474-9c02-f6ef972f5607
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.