PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analiza naprężeń i deformacji w cienkich blachach tytanowych podczas spawania wiązką elektronów

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
The analysis of thermally induced stresses and distortions in thin titanium sheets during electron beam welding
Języki publikacji
PL EN
Abstrakty
PL
W pracy przedstawiono termiczno-mechaniczną analizę procesu spawania wiązką elektronów. W procesie spawania połączono dwie cienkie blachy wykonane z różnych gatunków tytanu, Grade 2 i Grade 5. W wyniku spawania powstały znaczne deformacje blach. Model numeryczny został opracowany na podstawie Metody Elementów Skończonych, MES. Model oblicza wpływ obciążenia termicznego na pole naprężeń i przemieszczeń. Wyniki uzyskane za pomocą modelu numerycznego zostały porównane z wynikami badań eksperymentalnych. Obliczone pole naprężeń zweryfikowano poprzez porównanie obliczonych naprężeń własnych z naprężeniami zmierzonymi na powierzchni blach za pomocą metody dyfrakcji rentgenowskiej.
EN
This paper presents a thermo-mechanical analysis of an electron beam welding process. During the process two thin sheets made of dissimilar titanium grades, Grade 2 and Grade5, were joined together. The welding processes introduced significant distortions into the sheets. The numerical model is based on finite element method. The model calculates the impact of thermal load on stress and displacement fields. The results calculated by the model were compared with the experimental results. The calculated stress field was verified by comparing residual stresses at the external surface in a given cross-section with stress values obtained by x-ray diffraction measurements.
Rocznik
Strony
113--126
Opis fizyczny
Bibliogr. 21 poz., rys., wykr.
Twórcy
autor
  • Politechnika Częstochowska, Częstochowa
autor
  • Politechnika Częstochowska, Częstochowa
autor
  • Politechnika Częstochowska, Częstochowa
Bibliografia
  • [1] Böllinghaus T. (et al.): Manufacturing Engineering, in K.H. Grote. E.K. Antonsson (Eds.): Springer handbook of mechanical engineering. Germany: Springer 2009.
  • [2] Zhao H.Y., Wang X., Wang X.C., Lei Y.P.: Reduction of residual stress and deformation in electron beam welding by using multiple beam technique. Front. Mater. Sci. China vol. 2 no. 1 (2008), s. 66–71.
  • [3] Dilthey U., Goumeniouk A., Böhm S., Welters T.: Electron beam diagnostics: a new release of the diabeam system. Vacuum vol. 62 no. 2–3 (2001), s. 77–85.
  • [4] Bylica A., Sieniawski J.: Tytan i jego stopy. Warszawa: PWN 1985.
  • [5] Adamus J., Lacki P.: Forming of the titanium elements by bending. Computational Materials Science vol. 50 no. 4 (2011), s. 1305–1309.
  • [6] Adamus J., Lacki P.: Investigation of sheet titanium forming with flexible tool – experiment and simulation. Archives of Metallurgy and Materials no. 57 (2012), s. 1247–1252.
  • [7] Adamus J.: Theoretical and experimental analysis of the sheet-titanium forming process. Archives of Metallurgy and Materials no. 54 (2009), s. 705–709.
  • [8] Winowiecka J., Więckowski W., Zawadzki M.: Evaluation of drawability of tailor-welded blanks made of titanium alloys Grade 2 || Grade 5. Computational Materials Science vol. 77 (2013), s. 108–113.
  • [9] Gronostajski Z., Bandoła P., Skubiszewski T.: Influence of cold and hot pressing on densification behaviour of titanium alloy powder Ti6Al4V. Archives of Civil and Mechanical Engineering no. 9 (2009), s. 47–57.
  • [10] Donachie M.J.: Titanium: A technical guide. 2nd ed. Materials Park, OH: ASM International 2000.
  • [11] Moiseyev V.N.: Titanium alloys: Russian aircraft and aerospace applications. Boca Raton: Taylor & Francis 2006.
  • [12] Arai T.: The laser butt welding simulation of the thin sheet metal, [w:] Öchsner A., da Silva L.F.M., Altenbach H. (Eds.): Materials with complex bahaviour: modelling, simulation, testing and applications. Berlin: Springer Verlag 2010.
  • [13] Deng D., Murakawa H., Liang W.: Prediction of welding distortion in a curved plate structure by means of elastic finite element method. Journal of Materials Processing Technology vol. 203 no. 1–3 (2008), s. 252–266.
  • [14] Murakawa H., Deng D., Ma N., Wang J.: Applications of inherent strain and interface element to simulation of welding deformation in thin plate structures. Computational Materials Science vol. 51 no. 1 (2012), s. 43–52.
  • [15] Zeng P., Gao Y., Lei L.P.: Welding process simulation under varying temperatures and constraints. Materials Science and Engineering: A vol. 499 no. 1–2 (2009), s. 287–292.
  • [16] Lacki P., Adamus K.: Welding of thin titanium sheets of different mechanical properties. Obróbka Plastyczna Metali, vol. XXIII (2012), s. 169–180.
  • [17] Adamus K., Kucharczyk Z., Wojsyk K., Kudla K.: Numerical analysis of electron beam welding of different grade titanium sheets. Computational Materials Science vol. 77 (2013), s. 286–294.
  • [18] Bathe K.-J.: Finite element procedures: Klaus-Jurgen Bathe. 2006.
  • [19] Słoma J., Szczygieł I., Sachajdak A.: Modelling of thermal phenomena in electric arc during surfacing. Archives of Civil and Mechanical Engineering no. 11 (2011), s. 437–449.
  • [20] Piekarska W., M. Kubiak: Three-dimensional model for numerical analysis of thermal phenomena in laser–arc hybrid welding process. International Journal of Heat and Mass Transfer vol. 54 no. 23-24 (2011), s. 4966–4974.
  • [21] Lacki P., Adamus K., Wieczorek P.: Theoretical and experimental analysis of thermo-mechanical phenomena during electron beam welding process. Computational Materials Science (2014), DOI: Oct. 1016/j.commatsci.2014.01.027.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-12f6a790-659c-4bb7-90bd-d5ad73642da4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.