PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of parameters of the vibration-based energy harvesting system located in the micro-power generator

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article presents the optimisation process of some key parameters such as the size of the macro-fibre composite (MFC) and the optimal impedance load matching the piezoelectric harvester located in the prototype of the micro-power generator to enhance the vibration-based energy harvesting effect. For this, the distributed parameter model of this structure, including MFCs of the 8514 P2, 5628 P2 and 8528 P2 types, with a homogenous material in the piezoelectric fibre layer was determined. The numerical analysis of the FEM model of the flexure strip with piezo-composite indicated that the highest amplitude of voltage >7 V is generated by the proposed device with the piezo of the 8528 P2 type, while the lowest amplitude (close to 1.1 V) was noted for the piezo of the 8514 P2 type. Experiments were carried out on the laboratory stand to verify the obtained results. In addition, it was shown that the power output of the real EH system with the piezo of the MFC 8528 type, connecting with the matched resistive load (R = 120 kΩ), led to a significant increase in the value of the generating voltage up to 500 mW versus EH system with the piezo of 8514 P2 and 5628 P2 types. Finally, the effectiveness of this system was found to be close to 33% for the EH system with the piezo of the 8528 P2 type.
Rocznik
Strony
223--232
Opis fizyczny
Bibliogr. 43 poz., rys., tab., wykr.
Twórcy
  • Faculty of Mechanical Engineering, Bialystok University of Technology, Wiejska 45C Street, 15-351 Białystok, Poland
Bibliografia
  • 1. Bradai S, Naifar S, Viehweger C, Kanoun O, Litak G. Nonlinear analysis of electrodynamics broadband energy harvester. European Physical Journal. Special Topics. 2015; 224: 2919-2927.
  • 2. Chen Y, Yan Z. Nonlinear analysis of axially loaded piezoelectric energy harvesters with flexoelectricity. International Journal of Me-chanical Science. 2020;173:105473.
  • 3. Wang L, Yuan FG. Vibration energy harvesting by magnetostrictive material. Smart Mater Structures. 2008; 17(4).
  • 4. Wei Ch, Jing X. A comprehensive review on vibration energy har-vesting: Modelling and realization. Renewable and Sustinable Energy Reviews. 2017; 74: 1-18.
  • 5. Dey S, Roy D, Patra S, Santra T. Performance of a modified magne-tostrictive energy harvester in mechanical vibration. Heliyon. 2019; 5 (1).
  • 6. Lei W, Yuang FG. Vibration energy harvesting by magnetostrictive material. Smart Material Structures. 2008; 17(4): 045009.
  • 7. Lee CS, Joo J, Han S, Lee JH, Koh SK. Poly (vinylidene fluoride) transducers with highly conducting poly (3,4-ethylendioxythiopene) electrodes. Synthetic Metal 2005; 152(1-3): 49-52.
  • 8. Morita T. Miniature piezoelectric motors, Sensors and Actuators. A: Physical. 2003: 103(3): 291-300.
  • 9. Nicoletti R, de Araujo MVV. Electromagnetic harvester for lateral vibration in rotating machines. Mechanical Systems and Signal Pro-cessing. 2015:(52-53):685-699.
  • 10. Wang I. Vibration Energy Harvesting by Magnetostractive Material for Powering Wireless Sensors. 2007. Doctoral Thesis.
  • 11. Ouro-Koura H, Sotoudeh Z, Tichy JA, Borca-Tascius DA. Effective-ness of energy transfer versus mixing entropy in coupled mechani-cal-electrical oscillatiors. Energies. 2022;15:6105.
  • 12. Roundy S, Wright PK, Rabaey J. A study of low level vibrations as a power source for wireless sensors node. Computer Comunications. 2013; 26(11): 1131:1144.
  • 13. Li J, Ouro-Koura H, Arnow H, Nowbahari A, Galarza M, Obispo M, Tong X, Azadmehr M, Hella MM, Tichy JA, Borca-Tascius DA. A Novel comb design for enhanced power and bandwidth in electro-static MEMS energy converters. IEEE 36th International Conference on Micro Electro Mechanical Systems (MEMS). DOI: 10.1109/MEMS49605.2023.10052590
  • 14. Li J, Tichy J, Borca-Tascius DA. A predictive model for electrostatic energy harvesters with impact-based frequency up-conversion, Jour-nal of Micromechanics and Microengineering. 2020; 30(12): 125012.
  • 15. Li J, Ouro-Koura H, Arnow H, Nowbahari A, Galarza M, Obispo M, Tong X, Azadmehr M, Halvorsen E, Hella MM, Tichy JA, Borca-Tascius DA. Broadband Vibration-based Energy harvesting for Wire-less Sensor Applications using Frequency Up-conversion. Sensors. 2023; 23(11): 5296.
  • 16. Koszewnik A, Oldziej D. Performance assessment of an energy harvesting system located on a copter. European Physical Journa., Special Topics. 2019; 228: 1677–1692.
  • 17. Koszewnik A. Analytical Modeling and Experimental Validation of an Energy Harvesting System for the Smart Plate with an Integrated Pi-ezo-Harvester. Sensors. 2019; 19(4): 812.
  • 18. Cahill P, Hazra B, Karoumi R, Mathewson A, Pakrashi V. Vibration energy harvesting based monitoring of an operational bridge under-going forced vibration and train passage. Mechanical Systems and Signal Processing. 2018; 106: 265–283.
  • 19. Na WS, Baek J. Piezoelectric Impedance-Based Non-Destructive Testing Method for Possible Identification of Composite Debonding Depth. Micromachines 2019, 10: 621.
  • 20. O’Leary K, Pakrashi V, Kelliher D. Optimization of composite material tower for offshore wind turbine structures. Renewable Energy. 2019; 140: 928–942.
  • 21. Okosun F, Cahill P, Hazra B, Pakrashi V. Vibration-based leak detection and monitoring of water pipes using output-only piezoelec-tric sensors. European Physical Journal Special Topics. 2019; 228: 1659–1675.
  • 22. Koszewnik A. Experimental validation of equivalent circuit modeling of the piezo-stripe harvester attached to the SFSF rectangular plate. Acta Mechanica et Automatica. 2020; 14(1): 8-15.
  • 23. Cahill P, Ni Nuallain NA, Jackson N, Mathewson A, Karoumi R, Pakrashi V. Energy Harvesting from Train-Induced Response in Bridges. Journal of. Bridge Engineering 2014; 19: 04014034.
  • 24. Koszewnik A, Lesniewski K, Pakrashi V. Numerical Analysis and Experimental Verification of Damage Identification Metrics for Smart Beam with MFC elements to support structural health monitoring. Sensors. 2021; 21(20): 6796.
  • 25. Ambroziak L, Ołdziej D, Koszewnik A. Multirotor Motor Failure Detec-tion with Piezo Sensor. Sensors. 2023; 23(2): 1048.
  • 26. Yang F, Gao M, Wang P, Zuo J, Dai J, Cong J. Efficient piezoelectric harvester for random broadband vibration of rail. Energy. 2021; 218: 119559.
  • 27. Zheng J, Dou B, Li Z, Wu T, Tian H, Cui G. Design and Analysis of a While-Drilling Energy-Harvesting Device Based on Piezoelectric Ef-fect. Energies. 2020; 14(5): 1266.
  • 28. Wu Z, Xu Q. Design and Development of a Novel Two-Directional Energy Harvester with Single Piezoelectric Stack. IEEE Transaction and Industrial Electronics. 2021; 68: 1290–1298.
  • 29. Kan J, Zhang M, Wang S, Zhang Z, Zhu Y, Wang J. A cantilevered piezoelectric energy harvester excited by an axially pushed wedge cam using repulsive magnets for rotary motion. Smart Material and Structures. 2021; 30: 065009.
  • 30. Ju S, Ji Ch-H. Impact-based piezoelectric energy harvester. Applied Energy. 2018; 214: 139-151.
  • 31. Zhou W, Penamalli GR, Zuo L. An efficient vibration energy harvester with a multi-mode dynamic magnifier. Smart Materials and Struc-tures. 2012; 21: 015014.
  • 32. Caban J, Litak G, Ambrozkiewicz B, Wolszczak P, Gardynski L, Stączek P. Impact-based piezoelectric energy harvesting system ex-cited from diesel engine suspension. Applied Computer Science. 2020; 16(3): 16-29.
  • 33. Peng Y, Xu Z, Wang, M, Li Z, Peng J, Luo J, Xie S, Pu H, Yang Z. Investigation of frequency-up conversion effect on the performance improvement of stack-based piezoelectric generators. Renewable Energy. 2021; 172: 551–563.
  • 34. Wen S, Xu Q. Design of a Novel Piezoelectric Energy Harvester Based on Integrated Multistage Force Amplification Frame. IEEE/ASME Transaction Mechatronics. 2019; 24: 1228–1237.
  • 35. Hwang GT et al. Self-powered wireless sensor node enabled by an aerosol-deposited PZT flexible energy harvester. Advanced Energy Materials. 2016; 6(13): 1-9.
  • 36. Ramadoss A, Saravanakumar B, Lee SW, Kim YS, Kim SJ, Wang ZL. Piezoelectric-driven self-charging supercapacitor power cell. ACS Nano. 2015; 9(4): 4337-4345.
  • 37. Gilshteyn EP et al. Flexible self-powered piezo-supercapacitor sys-tem for wearable electronics. Nanotechnology. 2018; 29(32): 1-14.
  • 38. Pu X, Hu W, Wang ZL. Toward wearable self-charging power sys-tems: the integration of energy-harvesting and storage devices. Small. 2018; 14(1): 1-19.
  • 39. Zhao H, Wei X, Zhong Y, Wang P. A direction Self-tuning two-dimensional piezoelectric vibration energy harvester. Sensors. 2020; 20(77): 1–13.
  • 40. Selleri G, Poli F, Neri R, Gasperini L, Gualandii Ch, Soavi F, Fabiani D. Energy harvesting and storage with ceramic piezoelectric trans-ducers coupled with an ionic liquid-based supercapacitor. Journal of Energy Storage. 2023;60:106660.
  • 41. Koszewnik A. The influence of a slider gap in the beam-slider struc-ture with an MFC element on energy harvesting from the system: ex-perimental case. Acta Mechanicca. 2021;232: 819-833.
  • 42. Ma Y, Wang J, Lic Ch, Fu X. A micro-power generator based on Two Piezoelectric MFC Films. Crystals. 2021; 11(8): 861.
  • 43. Hu K, Li H. Large deformation mechanical modeling with bilinear stiffness for Macro-Fiber Composite bimorph based on extending mixing rules. Journal of Intelligent Material Systems and Structures. 2020; 1-13. DOI:10.1177/1045389X20951257
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-12eb6971-8a70-4b76-911e-23511b4b5e26
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.